



# Instrukcja użytkowania

# Analizator spalin MULTILYZER<sup>®</sup> STx



Obowiązuje m.in. dla urządzenia:

| ArtNr   | nazwa                                                                                      |
|---------|--------------------------------------------------------------------------------------------|
| 4729210 | Analizator spalin MULTILYZER <sup>®</sup> STx O <sub>2</sub> , CO/H <sub>2</sub>           |
| 4730210 | Analizator spalin MULTILYZER <sup>®</sup> STx O <sub>2</sub> , CO/H <sub>2</sub> , NO      |
| 4748210 | Analizator spalin MULTILYZER <sup>®</sup> STx O <sub>2</sub> , CO/H <sub>2</sub> , NO, CO+ |
| 4746210 | Analizator spalin MULTILYZER® STx O2, CO/H2, NO, SO2, CO+, NO2                             |

 $\square$ 

# Spis treści

 $\triangle$ 

| 1 | Objaś  | nienia do instrukcji użytkowania                               | 5  |
|---|--------|----------------------------------------------------------------|----|
|   | 1.1    | Znaki ostrzegawcze                                             | 5  |
|   | 1.2    | Wyjaśnienie znaczenia symboli                                  | 5  |
| 2 | Bezpie | eczeństwo                                                      | 6  |
|   | 2.1    | Przeznaczenie urządzenia                                       | 6  |
|   | 2.2    | Ograniczenia stosowania                                        | 6  |
|   | 2.3    | Kontrola jakości                                               | 6  |
|   | 2.4    | Uprawnienia do obsługi                                         | 7  |
|   | 2.5    | Kalibracja                                                     | 7  |
|   | 2.6    | Modyfikacja produktu                                           | 7  |
|   | 2.7    | Używanie części zamiennych i wyposażenia dodatkowego           | 7  |
|   | 2.8    | Odpowiedzialność                                               | 7  |
| 3 | Opis u | ırządzenia                                                     | 8  |
|   | 3.1    | Panel sterowania                                               | 9  |
|   | 3.2    | Zawartość zestawu                                              | 10 |
|   | 3.3    | Wartości mierzone i obliczane                                  | 10 |
|   | 3.4    | Metody pomiarowe                                               | 12 |
|   | 3.5    | Dane techniczne                                                | 14 |
|   | 3.6    | Formuły obliczeniowe                                           | 18 |
|   | 3.7    | Dopuszczenia i atesty                                          | 19 |
| 4 | Trans  | port i przechowywanie                                          | 20 |
| 5 | Uruch  | omienie                                                        | 21 |
|   | 5.1    | Schemat połączeń                                               | 21 |
|   | 5.2    | Korzystanie z dedykowanej drukarki na podczerwień EUROprinter  | 22 |
|   | 5.3    | Korzystanie z dedykowanej drukarki EUROprinter Bluetooth Smart |    |
|   |        | (opcja)                                                        | 23 |
| 6 | Praca  |                                                                | 24 |
|   | 6.1    | Struktura menu                                                 | 24 |
|   | 6.2    | Tryb pomiaru                                                   | 28 |
|   | 6.3    | Generowanie kodu QR                                            | 32 |
|   | 6.4    | Funkcja Rejestrator danych (opcja)                             | 33 |
|   | 6.5    | Program "Analiza spalin"                                       | 35 |
|   | 6.6    | Program "Pomiar CO w otoczeniu"                                | 42 |
|   | 6.7    | Program "Pomiar temperatury"                                   | 45 |
|   | 6.8    | Program "Pomiar ciśnienia"                                     | 48 |
|   | 6.9    | Program "Spadek ciśnienia"                                     | 52 |
|   | 6.10   | Program "Pomiar wycieku" (opcja)                               | 54 |
|   | 6.11   | Program "Pomiar wielkości wycieku" (opcja)                     | 56 |
|   |        |                                                                |    |

|    | 6.12   | Program "Pomiar prędkości przepływu"                    | 62 |
|----|--------|---------------------------------------------------------|----|
| 7  | Menu   | konfiguracji "Ustawienia"                               | 64 |
|    | 7.1    | Ustawienie czasu i daty                                 | 65 |
|    | 7.2    | Ustawienia ekranu                                       | 65 |
|    | 7.3    | Ustawienie przycisku "Ulubione"                         | 68 |
|    | 7.4    | Ustawienia dźwięków                                     | 68 |
|    | 7.5    | Informacje o urządzeniu                                 | 69 |
| 8  | Obsłu  | ga i struktura pamięci na karcie MicroSD, menu "Pamięć" | 70 |
|    | 8.1    | Tworzenie bazy danych                                   | 70 |
|    | 8.2    | Sposób zapisu danych                                    | 75 |
|    | 8.3    | Wprowadzenie adresu użytkownika                         | 77 |
| 9  | Akum   | ulator                                                  | 78 |
|    | 9.1    | Praca na akumulatorze / ładowarce                       |    |
|    | 9.2    | Ładowanie akumulatora                                   |    |
| 10 | Konse  | erwacja                                                 | 79 |
| 11 | Rozwi  | ązywanie problemów                                      | 80 |
| 12 | Wyłąc  | zenie z eksploatacji, utylizacja                        |    |
| 13 | Częśc  | i zamienne i akcesoria                                  | 83 |
| 14 | Gwara  | ancja                                                   | 84 |
| 15 | Prawa  | autorskie                                               | 84 |
| 16 | Satyst | akcja klienta                                           | 84 |
| 17 | Certyf | ikaty                                                   | 85 |
|    | 17.1   | Certyfikat EC, RED, RoHS, WEEE                          | 85 |
| 18 | Opcja  | : "Pomiar emisji pyłu"                                  |    |

 $\square$ 



Instrukcja użytkowania jest ważnym elementem dostawy, dlatego zalecamy:

- Przeczytać instrukcję użytkowania przed pierwszym uruchomieniem urządzenia.
- Przechowywać instrukcję użytkowania przez cały czas eksploatacji urządzenia.
- Przekazać instrukcję użytkowania każdemu następnemu posiadaczowi lub użytkownikowi urządzenia.

### 1.1 Znaki ostrzegawcze

### ZAGROŻENIE Określa rodzaj i źródło zagrożenia.

Opisuje co zrobić, by uniknąć zagrożenia

Zagrożenia mają 3 poziomy:

| Typ ostrzeżenia | Znaczenie                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| NIEBEZPIEC-     | Bezpośrednie niebezpieczeństwo!                                                                                                   |
| ZENSTWO         | Nieprzestrzeganie grozi śmiercią lub poważnym<br>uszkodzeniem ciała.                                                              |
| OSTRZEŻENIE     | Możliwe niebezpieczeństwo!                                                                                                        |
|                 | Nieprzestrzeganie może spowodować śmierć lub<br>poważne uszkodzenia ciała.                                                        |
| UWAGA           | Niebezpieczna sytuacja!                                                                                                           |
|                 | Nieprzestrzeganie może spowodować lekkie lub<br>średnie uszkodzenie ciała albo szkody material-<br>ne lub uszkodzenie urządzenia. |

# 1.2 Wyjaśnienie znaczenia symboli

| Symbol    | Znaczenie                               |  |
|-----------|-----------------------------------------|--|
| $\square$ | Wymagana kontrola wykonanych czynności  |  |
|           | Działanie w jednym kroku                |  |
| 1.        | Działanie składające się z kilku kroków |  |
| Ŕ         | Wynik działania                         |  |
| •         | Lista punktowa                          |  |

| Symbol      | Znaczenie                 |
|-------------|---------------------------|
| Tekst       | Wskazanie na wyświetlaczu |
| Wyróżnienie | Wyróżnienie               |

# 2 Bezpieczeństwo

### 2.1 Przeznaczenie urządzenia

Analizator spalin MULTILYZER<sup>®</sup> STx jest uniwersalnym urządzeniem służącym do pomiaru parametrów gazów spalinowych w kotłach opalanych olejem lub gazem. Kotły mogą być wyposażone w palniki o stałej, stopniowanej lub modulowanej mocy.

W rozszerzonej wersji o sensor COwysokie, urządzenie może być wykorzystywane do pomiarów parametrów gazów spalinowych w kotłach na paliwo stałe (np. ekogroszek, pelet).

### 2.2 Ograniczenia stosowania

Analizator MULTILYZER<sup>®</sup> STx nie może być używany w strefach zagrożenia wybuchem. Praca w strefach zagrożonych wybuchem może doprowadzić do iskrzenia, pożaru lub wybuchu. Analizator spalin MULTILYZER<sup>®</sup> STx nie jest przeznaczony do analizy składu i monitoringu powietrza oraz ciągłej, długotrwałej analizy spalin trwającej powyżej 60 min. Nie może być także używany jako urządzenie zabezpieczające lub alarmujące. Każde inne zastosowanie niż wskazane w rozdziale 2.1 jest zabronione.

### 2.3 Kontrola jakości

Konstrukcja analizatora spalin MULTILYZER<sup>®</sup> STx odpowiada obecnemu stanowi techniki i normom technicznym dotyczącym bezpieczeństwa. Każdy analizator spalin sprawdzany jest przed wysyłką pod względem poprawności działania i bezpieczeństwa.

Należy używać analizatora spalin jedynie w stanie technicznym nie budzącym zastrzeżeń. Należy przeczytać i zrozumieć instrukcję użytkowania, jak również stosować się do odpowiednich przepisów bezpieczeństwa.

# OSTRZEŻENIE Poważnie poparzenia lub śmierć w skutek kontaktu z częściami pod napięciem.



 Nie należy dotykać analizatorem lub czujnikami części pod napięciem.



### 2.4 Uprawnienia do obsługi

Analizator spalin MULTILYZER<sup>®</sup> STx może być obsługiwany tylko przez odpowiednio wykwalifikowany i wyszkolony personel.

### 2.5 Kalibracja

Analizator spalin MULTILYZER<sup>®</sup> STx powinien być kalibrowany przynajmniej raz w roku. Kalibracje i serwis urządzenia muszą być wykonywany tylko przez autoryzowany serwis producenta.

## 2.6 Modyfikacja produktu

Zmiany oraz modyfikacje przeprowadzone przez nieupoważnione osoby mogą powodować zagrożenie i są zabronione ze względów bezpieczeństwa.

## 2.7 Używanie części zamiennych i wyposażenia dodatkowego

Używanie niewłaściwych części zamiennych i dodatkowych akcesoriów może spowodować uszkodzenie urządzenia.

 Należy stosować tylko oryginalne części zamienne i wyposażenie dodatkowe wyprodukowane przez producenta.

### 2.8 Odpowiedzialność

Producent nie ponosi odpowiedzialności za bezpośrednie uszkodzenia lub ich konsekwencje wynikające z niedokładnego przeczytania bądź niezrozumienia instrukcji użytkowania, wskazówek i zaleceń.

Producent oraz firma sprzedająca urządzenie nie odpowiadają za uszkodzenia i koszty poniesione przez użytkownika lub osoby trzecie korzystające z urządzenia, powstałe w wyniku użycia niezgodnego z przeznaczeniem wskazanym w rozdziale 2.1 instrukcji użytkowania, niewłaściwej konserwacji lub obsługi niezgodnej z zaleceniami producenta.

AFRISO Sp. z o.o. dokłada wszelkich starań aby materiały informacyjne nie zawierały błędów.

W przypadku stwierdzenia błędów lub nieścisłości w poniższej instrukcji użytkowania prosimy o kontakt: zok@afirso.pl, tel. 32 330 33 55.



# 3 Opis urządzenia

Analizator spalin MULTILYZER<sup>®</sup> STx jest wyposażony w kolorowy podświetlany wyświetlacz TFT, wytrzymałą obudowę i gumowe etui ochronne z magnesami. Jest obsługiwany z wykorzystaniem odpornej na zapylenie i zabrudzenie klawiatury. Dzięki zastosowaniu 3 klawiszy funkcyjnych oraz 2 klawiszy nawigacyjnych obsługa jest niezwykle prosta i intuicyjna.

Konstrukcja analizatora spalin przewiduje montaż do sześciu sensorów elektrochemicznych (O2 i CO z kompensacją wodoru w standardzie oraz NO, SO<sub>2</sub>, CO wysokie oraz NO<sub>2</sub> jako opcje dodatkowe). Ich zastosowanie umożliwia określenie parametrów spalin takich jak stężenie O<sub>2</sub>, stężenie CO i CO<sub>2</sub>, parametru lambda oraz sprawności kotła. Urządzenie posiada 3 gniazda umożliwiające pomiar temperatury np. spalin, otoczenia. Analizator posiada dodatkowe, użyteczne funkcje:

- Pomiar CO w otoczeniu oraz ustawienie progów granicznych po przekroczeniu których wzbudzony zostaje alarm dźwiękowy. Umożliwia to szybką reakcję na przekroczenie dopuszczalnych wartości stężenia CO w powietrzu, co w konsekwencji zapewnia bezpieczeństwo podczas pracy w kotłowni.
- 2. Dodatkowa pompka płucząca chroniąca sensor CO przed uszkodzeniem.
- Autodiagnostyka sensorów oprogramowanie analizatora umożliwia bieżącą kontrolę stanu sensorów. Dzięki tej opcji można z wyprzedzeniem zaplanować przegląd analizatora i nie być zmuszonym do wymiany sensora podczas sezonu serwisowego.
- 4. Pomiar ciągu kominowego.
- 5. Pomiar strumienia objętościowego oraz prędkości spalin przy użyciu rurki Pitota.

Urządzenie posiada możliwość odczytu kart Micro SD, zapewnia to niezależny system zapisu danych oraz umożliwia wydruk protokołów z pomiaru z wykorzystaniem komputera i standardowej drukarki biurowej. System zapisu danych umożliwia także eksport wyników do pliku PDF i wysyłkę ich do klienta w formie elektronicznej. MULTILY-ZER STx posiada interfejs mini USB do ładowania akumulatora Lilon z wykorzystaniem ładowarki sieciowej bądź gniazda USB komputera. Połączenie z drukarką przenośną realizowane jest przez port podczerwieni. Dodatkowo w standardowym wyposażeniu znajduje się Bluetooth Smart umożliwiający komunikację z komputerem.

# 3.1 Panel sterowania

| Klawisz | Funkcja                                                                                                 |
|---------|---------------------------------------------------------------------------------------------------------|
|         | Klawisze nawigacyjne                                                                                    |
|         | Funkcje nawigacyjne do poruszania się w<br>górę i w dół w menu oraz zmiany określo-<br>nych parametrów. |
|         |                                                                                                         |
| ſ       | Klawisz Powrót / Koniec                                                                                 |
| П       | Klawisz "HOLD" / Szybki dostęp                                                                          |
| →≣      | Klawisz Menu / Enter                                                                                    |
| C       | Klawisz Włączania / Wyłączania urządzenia                                                               |
|         | Klawisz drukowania                                                                                      |

| Klawisz |     | Funkcja            |
|---------|-----|--------------------|
|         |     | Klawisz "Ulubione" |
|         | 5.5 |                    |
|         |     |                    |
|         |     |                    |

## 3.2 Zawartość zestawu

Zestaw zawiera:

- Analizator spalin
- Gumowa kieszeń ochronna z magnesami
- Sonda pomiarowa z jednostką przygotowania spalin
- Czujnik temperatury otoczenia
- Komplet przewodów do pomiaru ciśnienia
- Zestaw filtrów zapasowych
- Ładowarka oraz kabel USB
- Karta pamięci micro SD z adapterem
- Drukarka na podczerwień EUROprinter
- Torba transportowa
- Certyfikat kalibracji
- Instrukcja użytkowania

# 3.3 Wartości mierzone i obliczane

### Tabela 1: Wartości mierzone

| Wartość        | Opis wartości mierzonej  | Jednostka |
|----------------|--------------------------|-----------|
| Ts             | Temperatura spalin       | °C, °F    |
| Тр             | Temperatura powietrza    | °C, °F    |
| O <sub>2</sub> | Stężenie tlenu           | Obj%      |
| СО             | CO Stężenie tlenku węgla |           |

| Wartość         | Opis wartości mierzonej                             | Jednostka                                               |
|-----------------|-----------------------------------------------------|---------------------------------------------------------|
| NO              | Stężenie tlenku azotu (opcja)                       | ppm, mg/m³,<br>mg/kWh, mg/MJ                            |
| SO <sub>2</sub> | Stężenie dwutlenku siarki (opcja)                   | ppm, mg/m³,<br>mg/kWh, mg/MJ                            |
| NO <sub>2</sub> | Stężenie dwutlenku azotu (opcja)                    | ppm, mg/m³,<br>mg/kWh, mg/MJ                            |
| CO+             | Stężenie tlenku węgla o wysokim<br>zakresie (opcja) | Obj%                                                    |
| Ciąg            | Ciąg kominowy                                       | Pa, hPa, kPa,<br>mbar, bar,<br>mmWs, mmHg,<br>inHg, psi |
| Cisn. atmo.     | Ciśnienie atmosferyczne                             | hPa                                                     |

### Tabela 3: Wartości obliczane

| Wartość              | Opis wartości obliczanej                                                                 | Jednostka                    |
|----------------------|------------------------------------------------------------------------------------------|------------------------------|
| CO <sub>2</sub>      | Dwutlenek węgla                                                                          | Obj%                         |
| CO <sub>ref</sub>    | Stężenie tlenku węgla odniesione do wartości referencyjnej O <sub>2</sub>                | ppm                          |
| Eta                  | Sprawność                                                                                | %                            |
| Lambda               | Współczynnik nadmiaru powietrza                                                          | λ                            |
| qA                   | Straty kominowe                                                                          | %                            |
| Punkt<br>rosy        | Punkt rosy w odniesieniu do danego paliwa                                                | °C, °F                       |
| T.różn.              | Różnica temperatury (Ts - Tp)                                                            | °C, °F                       |
| NO <sub>x</sub>      | Stężenie tlenków azotu (opcja)                                                           | ppm, mg/m³,<br>mg/kWh, mg/MJ |
| NOref.               | Stężenie tlenku azotu odniesione do wartości referencyjnej O <sub>2</sub> (opcja)        | ppm, mg/m³,<br>mg/kWh, mg/MJ |
| NO <sub>x</sub> ref. | Stężenie tlenków azotu odniesione do wartości referencyjnej O <sub>2</sub> (opcja)       | ppm, mg/m³,<br>mg/kWh, mg/MJ |
| SO <sub>2</sub> ref  | Stężenie dwutlenku siarki odniesione<br>do wartości referencyjnej O <sub>2</sub> (opcja) | ppm, mg/m³,<br>mg/kWh, mg/MJ |

| Wartość             | Opis wartości obliczanej                                                                | Jednostka                    |
|---------------------|-----------------------------------------------------------------------------------------|------------------------------|
| NO <sub>2</sub> ref | Stężenie dwutlenku azotu odniesione<br>do wartości referencyjnej O <sub>2</sub> (opcja) | ppm, mg/m³,<br>mg/kWh, mg/MJ |

# 3.4 Metody pomiarowe

Tabela 3: Metody pomiarowe

| Funkcja                        | Opis                                                                                                                                                                                                     |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pomiar temperatury             | Termoelement NiCr-Ni (typ K)                                                                                                                                                                             |
| Pomiar O <sub>2</sub>          | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Pomiar CO                      | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Pomiar CO+ (opcja)             | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Pomiar NO (opcja)              | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Pomiar SO <sub>2</sub> (opcja) | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Pomiar NO <sub>2</sub> (opcja) | Elektrochemiczne ogniwo pomiarowe                                                                                                                                                                        |
| Ciśnienie / ciąg               | Czujnik piezorezystancyjny z wewnętrzną<br>kompensacją temperatury                                                                                                                                       |
| Czas trwania pomiaru           | Krótkotrwałe pomiary do 60 minut, na-<br>stępnie konieczna ponowna kalibracja z<br>udziałem świeżego powietrza.                                                                                          |
| Analiza spalin                 | Pompa spalin wewnątrz urządzenia zasy-<br>sa spaliny, które doprowadzane są do<br>ogniwa pomiarowego poprzez zewnętrz-<br>ną pułapkę kondensatu i filtr cząstek sta-<br>łych oraz filtr membranowy.      |
| Kalibracja czujników           | Po załączeniu urządzenia i uruchomieniu<br>programu pomiaru spalin, następuje faza<br>kalibracji analizatora, która w wypadku<br>włączenia po dłuższym okresie nieuży-<br>wania może trwać do 30 sekund. |

MULTILYZER® STx

| Funkcja            | Opis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ochrona sensora CO | Standardowy sensor CO z dynamiczną<br>kompensacją wodoru jest chroniony au-<br>tomatycznie - powyżej wartości granicz-<br>nej – 10 000 ppm uruchamia się dodat-<br>kowa pompka, która płucze sensor chro-<br>niąc go przed zatruciem. Urządzenie<br>powraca automatycznie do pomiarów,<br>gdy stężenie CO spada poniżej wartości<br>8 000 ppm. W dodatkowym sensorem<br>CO+, pompa płucząca uruchamia się<br>przy 4 000 ppm, a wyłącza przy 1 600<br>ppm. Faza płukania nie wpływa na inne<br>mierzone wartości. |
| Pobór spalin       | Spaliny pobierane są z czopucha kotła za<br>pomocą sondy, która umożliwia pomiar<br>"jednopunktowy" lub pomiar "wielopunk-<br>towy" (sonda wielootworowa dostępna<br>jako wyposażenie dodatkowe).                                                                                                                                                                                                                                                                                                                |

OSTRZEŻENIE



Żywotność czujników zależy głównie od wykorzystanie i użytkowania przyrządu. Oczekiwana trwałość czujników wynosi około 24-60 miesięcy.

# 3.5 Dane techniczne

| Tabela | 4: O | ois tec | hnicznv | urzadzenia  |
|--------|------|---------|---------|-------------|
| rabora |      |         |         | an Equeonna |

| Parametr                                               | Wartość                                                                                                           |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Ogólna specyfikacja                                    |                                                                                                                   |  |
| Wymiary obudowy z<br>kieszenią ochronną<br>(S x W x D) | 90 x 53 x 220 mm                                                                                                  |  |
| Waga (z kieszenią<br>ochronną)                         | Ok. 625 g - 685 g (zależnie od ilości<br>czujników)                                                               |  |
| Materiał obudowy                                       | Tworzywo sztuczne                                                                                                 |  |
| Wyświetlacz                                            | Kolorowy, podświetlany TFT 3,5", roz-<br>dzielczość - 240 x 320 pikseli                                           |  |
| Przesył danych                                         | Port podczerwieni do obsługi drukarki,<br>Bluetooth low energy                                                    |  |
| Drukarka                                               | Zewnętrzna przenośna drukarka na pod-<br>czerwień EUROprinter (opcjonalnie dru-<br>karka z interfejsem Bluetooth) |  |
| Pamięć                                                 | Karta pamięci MicroSD, struktura danych<br>- katalog / dane pomiarowe                                             |  |
| Zakres temperatur                                      |                                                                                                                   |  |
| Praca                                                  | 0 °C do +40 °C                                                                                                    |  |
| Przechowywanie                                         | -20 °C do +50 °C                                                                                                  |  |
| Zakres ciśnienia                                       |                                                                                                                   |  |
| Otoczenie                                              | 750 hPa do +1100 hPa                                                                                              |  |
| Zakres wilgotności                                     |                                                                                                                   |  |
| Otoczenie                                              | 20 % rH do 80 % rH                                                                                                |  |
| Zasilanie                                              |                                                                                                                   |  |
| Akumulator                                             | Litowo-Jonowy 3.6 V / 2900 mAh                                                                                    |  |
| Ładowarka                                              | Ładowarka sieciowa mini USB                                                                                       |  |
| Bezpieczeństwo elektryc                                | zne                                                                                                               |  |
| Typ ochrony                                            | IP 42 zgodnie z EN 60529                                                                                          |  |

Λ

| Zgodność elektromagnetyczna          |                  |
|--------------------------------------|------------------|
| Emisja zakłóceń                      | DIN EN 55022     |
| Odporność na zakłó-<br>cenia         | DIN EN 61000-4-3 |
| Kompatybilność<br>elektromagnetyczna | DIN EN 61000-4-2 |

Tabela 5: Specyfikacja – wartości pomiarowe

| Parametr                         | Wartość                                 |  |
|----------------------------------|-----------------------------------------|--|
| Temperatura spalin (T1, T2 i T3) |                                         |  |
| Zakres pomiarowy                 | 0 °C do +1000 °C                        |  |
| Błąd maksymalny                  | ± 1 °C (0 °C do +300 °C)                |  |
|                                  | ± 1,0 % wskazania (od +300 °C)          |  |
| Rozdzielczość                    | 0,1 °C                                  |  |
| Element pomiarowy                | Termoelement NiCr-Ni (typ K)            |  |
| Temperatura otoczenia            |                                         |  |
| Zakres pomiarowy                 | -20 °C do +200 °C                       |  |
| Błąd maksymalny                  | ± 3 °C + 1 cyfra (-20 °C do 0 °C)       |  |
|                                  | ± 1 °C + 1 cyfra (0 °C do +200 °C)      |  |
| Rozdzielczość                    | 0,1 °C                                  |  |
| Element pomiarowy                | Termoelement NiCr-Ni (typ K)            |  |
| Ciśnienie / ciąg kominowy        |                                         |  |
| Zakres pomiarowy                 | ± 70 hPa (ciąg) / ± 150 hPa (ciśnienie) |  |
| Błąd maksymalny                  | ± 2 Pa + 1 cyfra (<2,00 hPa)            |  |
|                                  | ± 1 % odczytu (>2,00 hPa)               |  |
| Rozdzielczość                    | ± 0,01 hPa odpowiednio 1 Pa             |  |
| Element pomiarowy                | Czujnik półprzewodnikowy                |  |

| Pomiar predkości powietrza                |                                                 |  |
|-------------------------------------------|-------------------------------------------------|--|
|                                           |                                                 |  |
| Zakres pomiarowy                          | 0,5 - 70 m/s                                    |  |
| Błąd maksymalny                           | ±0,8 m/s                                        |  |
| Rozdzielczość                             | 0,1 m/s                                         |  |
| Element pomiarowy                         | Czujnik półprzewodnikowy                        |  |
| Pomiar O <sub>2</sub>                     |                                                 |  |
| Zakres pomiarowy                          | 0,0 Obj. % do 21,0 Obj. %                       |  |
| Błąd maksymalny                           | ± 0,2 Obj. % zmierzonej wartości                |  |
| Rozdzielczość                             | 0,1 Obj. %                                      |  |
| Element pomiarowy                         | Elektrochemiczne ogniwo pomiarowe               |  |
| Czas stabilizacji                         | 30 sekund                                       |  |
| pomiaru (190)                             |                                                 |  |
| Pomiar CO <sub>2</sub> (obliczone)        |                                                 |  |
| Zakres pomiarowy                          | 0 – CO2max                                      |  |
| Błąd maksymalny                           | ±0,2 Obj.%                                      |  |
| Rozdzielczość                             | 0,1 Obj.%                                       |  |
| Element pomiarowy                         | Obliczone ze zmierzonej wartości O <sub>2</sub> |  |
| Czas stabilizacji<br>pomiaru (T90)        | 30 sekund                                       |  |
| Pomiar CO (z kompensacją H <sub>2</sub> ) |                                                 |  |
| Zakres pomiarowy                          | 0 ppm do 10000 ppm (1,0 Obj. %)                 |  |
| Błąd maksymalny                           | 5 ppm (do 50 ppm)                               |  |
|                                           | 5 % zmierzonej wartości (od 50 ppm)             |  |
| Rozdzielczość                             | 1 ppm                                           |  |
| Element pomiarowy                         | Elektrochemiczne ogniwo pomiarowe               |  |
| Czas stabilizacji<br>pomiaru (T90)        | 60 sekund                                       |  |

| Parametr                              | Wartość                              |  |
|---------------------------------------|--------------------------------------|--|
| Pomiar NO                             |                                      |  |
| Zakres pomiarowy                      | 0-5000 ppm                           |  |
| Błąd maksymalny                       | 5 ppm (do 50 ppm)                    |  |
|                                       | 5 % zmierzonej wartości (od 50 ppm)  |  |
| Rozdzielczość                         | 1 ppm                                |  |
| Element pomiarowy                     | Elektrochemiczne ogniwo pomiarowe    |  |
| Czas stabilizacji po-<br>miaru (T90)  | 60 sekund                            |  |
| Pomiar COwysokie (bez kompensacji H₂) |                                      |  |
| Zakres pomiarowy                      | 0-4,0 Obj% (40000 ppm)               |  |
| Błąd maksymalny                       | 5 % zmierzonej wartości (± 1 cyfra)  |  |
| Rozdzielczość                         | 0,01 Obj%                            |  |
| Element pomiarowy                     | Elektrochemiczne ogniwo pomiarowe    |  |
| Czas stabilizacji po-<br>miaru (T90)  | 60 sekund                            |  |
| Pomiar SO <sub>2</sub>                |                                      |  |
| Zakres pomiarowy                      | 0-5000 ppm                           |  |
| Błąd maksymalny                       | 10 ppm (do 200 ppm)                  |  |
|                                       | 5 % zmierzonej wartości (od 200 ppm) |  |
| Rozdzielczość                         | 1 ppm                                |  |
| Element pomiarowy                     | Elektrochemiczne ogniwo pomiarowe    |  |
| Czas stabilizacji po-<br>miaru (T90)  | 60 sekund                            |  |

Tabela 6: Specyfikacja – wartości pomiarowe (opcje)

| Pomiar NO <sub>2</sub>               |                                      |
|--------------------------------------|--------------------------------------|
| Zakres pomiarowy                     | 0-500 ppm                            |
| Błąd maksymalny                      | 10 ppm (do 50 ppm)                   |
|                                      | 10 % zmierzonej wartości (od 50 ppm) |
| Rozdzielczość                        | 1 ppm                                |
| Element pomiarowy                    | Elektrochemiczne ogniwo pomiarowe    |
| Czas stabilizacji po-<br>miaru (T90) | 60 sekund                            |

# 3.6 Formuly obliczeniowe

### Obliczanie stężenia CO2

 $CO_2 = CO_2 \max^* (1 - \frac{O_2}{21}) \le \%$ 

| CO <sub>2</sub>    | Obliczona wartość dwutlenku węgla w Obj. %           |
|--------------------|------------------------------------------------------|
| CO <sub>2max</sub> | Maksymalne stężenie CO2 (zależne od paliwa) w Obj. % |
| O <sub>2</sub>     | Zmierzone stężenie tlenu w Obj. %                    |
| 21                 | Stężenie tlenu w powietrzu w Obj. %                  |

### Obliczanie strat kominowych

 $qA = (Ts - Tp) * (\frac{A_2}{21 - O_2} + B) w \%$ 

| qA             | Straty kominowe w %                      |
|----------------|------------------------------------------|
| Ts             | Temperatura spalin w °F lub °C           |
| Тр             | Temperatura otoczenia w °F lub °C        |
| A2, B          | Współczynniki właściwe dla danego paliwa |
| O <sub>2</sub> | Zmierzone stężenie tlenu w Obj. %        |

### Obliczanie współczynnika nadmiaru powietrza

$$Lambda = \frac{CO_{2max}}{CO_2} = \frac{21}{21 - O_2}$$

| Lambda | Współczynnik nadmiaru powietrza |
|--------|---------------------------------|
|--------|---------------------------------|

### Obliczenia sprawności cieplnej kotła (Eta)

|     | •                      |
|-----|------------------------|
| Eta | Wartość sprawności w % |

### Obliczanie CO referencyjnego (CO ref)

$$CO_{ref.} = CO * \frac{21 - O_{2ref}}{21 - O_2}$$

| CO <sub>ref.</sub> | Wartość referencyjna tlenku węgla   |
|--------------------|-------------------------------------|
| СО                 | Zmierzona wartość CO                |
| O <sub>2ref</sub>  | Wartość referencyjna O <sub>2</sub> |

## 3.7 Dopuszczenia i atesty

Analizator MULTILYZER® STx został przetestowany przez TÜV i jest zgodny z normą EN 50379-2.



# 4 Transport i przechowywanie

# UWAGA Możliwość uszkodzenia urządzenia podczas niewłaściwego transportu.

- Transportować w opakowaniu chroniącym przed uderzeniami.
- Nie rzucać urządzeniem.
- Transportować w dopuszczalnym zakresie temperatur.
- Chronić przed wilgocią, brudem oraz kurzem.
- Nie transportować w sąsiedztwie substancji chemicznych płynów czyszczących, farb, past ściernych itp.



# 5 Uruchomienie



Przed użyciem analizatora spalin MULTILYZER<sup>®</sup> STx konieczne jest sprawdzenie poprawności połączeń oprzyrządowania. Zalecenie dotyczy połączenia przewodów powietrznych i spalinowych oraz połączeń czujników temperatury.

# 5.1 Schemat połączeń



- 1 Sonda pomiarowa z pomiarem ciągu
- 2 Wtyczka czujnika temp. spalin (żółta)
- Przewód poboru spalin (żółte przyłącze)
- 4 Przewód ciągu (niebieskie przyłącze)
- 5 Czujnik temperatury otoczenia
- 6 Czujnik temperatury otoczenia z przewodem 2.5 m i uchwytem magnetycznym (opcja)
- 7 Czujnik temperatury zewnętrznej (opcja)
- 8 Jednostka przygotowania spalin
- 9 Regulowany stożek mocujący

Rys. 1: Schemat połączeń (strona czujników)



- 1 Gniazdo karty pamięci micro SD
- 2 Gniazdo mini USB do ładowarki (100-240 V / 50-60 Hz)
- 3 Głośnik
- 4 Port podczerwieni

Rys. 2: Schemat połączeń (strona interfejsów)

# 5.2 Korzystanie z dedykowanej drukarki na podczerwień EUROprinter

Aby wydrukować protokół na drukarce EUROprinter należy ustawić analizator spalin górną częścią w kierunku drukarki tak jak pokazano na rysunku poniżej. Należy włączyć drukarkę wciskając przycisk "ON" i rozpocząć transmisję danych wybierając odpowiednią opcję z menu analizatora spalin – "Drukuj". Należy zachować odległość pomiędzy analizatorem, a drukarką nie mniej niż 25 cm i nie więcej niż 75 cm.



Rys. 3: Położenie analizatora spalin i drukarki podczas drukowania

UWAGA

### Możliwy błąd transmisji danych pomiędzy urządzeniami

- Pomiędzy analizatorem spalin, a drukarką nie powinny się znajdować żadne przeszkody.
  - Należy się upewnić, że opcja drukowania przez interfejs Bluetooth w ustawieniach jest wyłączona.

# 5.3 Korzystanie z dedykowanej drukarki EUROprinter Bluetooth Smart (opcja)

Dane pomiarowe mogą być również przesyłane przez Bluetooth Smart do drukarki Bluetooth (EUROprinter-BLE). Należy aktywować Bluetooth Smart w ustawieniach analizatora i w drukarce. Aby aktywować Bluetooth Smart w drukarce należy wcisnąć jednocześnie przyciski "OFF" i "ON" drukarki. Niebieska migająca dioda LED oznacza aktywowaną funkcję Bluetooth Smart, w przeciwnym wypadku aktywny jest tryb podczerwieni. Połączenia analizatora i drukarki za pomoca Bluetooth Smart pokazane jest poniżej:

| 50 🛞 💷                                     | <b>* * *</b>                            | 2 😫 🎟                                         |
|--------------------------------------------|-----------------------------------------|-----------------------------------------------|
| Ulubione                                   |                                         |                                               |
| Analiza<br>spalin                          | Ustawienia<br>Czas / Data               | Bluetooth SMART<br>Bluetooth SMART aktywny () |
| Pomiar<br>temperatury                      | Język P<br>Dźwięk P<br>Ekran Klawiatura | Drukarka Bluetooth O<br>EUROprinter_079649 ►  |
| Pomiar<br>ciśnienia                        | Bluetooth SMART                         |                                               |
| Ustawienia                                 | Ostawienia rabryczne                    |                                               |
|                                            | Ustawienia 22.06.15<br>09:33            | Ustawienia 22 .06 .15<br>09:54                |
| 50 🛞 💷                                     |                                         |                                               |
|                                            |                                         |                                               |
| Bluetooth SMART                            | Bluetooth SMART                         | Bluetooth SMART                               |
| Drukarka Bluetooth<br>EUROprinter_079649 ► | Drukarka Bluetooth (EUROprinter 079649  | EUROPHILLER 073043                            |
|                                            |                                         |                                               |
| lletawienia 22.06.15                       |                                         | Szukaj nowych                                 |
| 09:54                                      | Ustawienia 22.06.15<br>09:55            | Ustawienia 22.06.15                           |

# 6 Praca

Włączanie urządzenia: krótkie wciśnięcie przycisku 🥝.

### 6.1 Struktura menu

Menu podzielone zostało na następujące listy programów: Ulubione, Wewnętrzne, Bezprzewodowe i System. Pomiędzy listami można się przełączać za pomocą przycisku Powrót / Koniec.



<u>Ulubione:</u> Nowe urządzenia posiadają domyślną listę ulubionych. Można do niej dodawać programy pomiarowe z list Wewnętrzne, Bezprzewodowe oraz System. Nowe ulubione programy pojawią się na końcu listy. O ile lista nie jest pusta, nie ma na nią wpływu wywołanie ustawień fabrycznych, w przeciwnym wypadku na listę powrócą programy domyślne..

<u>Wewnętrzne:</u> W tej liście znajdują się wszystkie programy pomiarowe realizowane za pomocą wbudowanych w urządzenie czujników.

<u>Bezprzewodowe:</u> W tej liście znajdują się wszystkie programy realizowane przez bezprzewodowe połączenie z urządzeniami pomiarowymi CAPBs®.

System: W tej liście znajdują się wszystkie informacje systemowe.

### Edycja listy ulubionych

W każdym programie pomiarowym w menu Ustawienia znajduje się pozycja "Do ulubionych". Aktywowanie tej pozycji spowoduje pojawienie się programu na końcu listy ulubionych, dezaktywowanie spowoduje usunięcie programu z listy ulubionych.

#### Opis urządzeń CAPBs®

CAPBs<sup>®</sup> to urządzenia pomiarowe do różnych zastosowań. Mogą być użyte do rozszerzenia urządzeń pomiarowych BlueLine poprzez wartości pomiarowe dostarczane przez CAPBs<sup>®</sup>. Urządzenia pomiarowe BlueLine lub aplikacja na smartfon albo tablet wyświetla, przelicza i rejestruje zmierzone wartości, które są przesyłane za pomocą technologii Bluetooth<sup>®</sup> Smart.

Przystosowane do współpracy z CAPBs<sup>®</sup> są następujące urządzenia pomiarowe BlueLine: analizatory spalin BLUELYZER<sup>®</sup> ST, EU-ROLYZER<sup>®</sup> STx, MULTILYZER<sup>®</sup> STx oraz manometry elektroniczne serii S4600 ST.

Różne CAPBs<sup>®</sup> pozwalają na pomiar ciśnienia, różnicy ciśnień, przepływu, temperatury, wilgotności. Istnieją CAPBs<sup>®</sup> do detekcji gazu oraz do pomiaru jakości powietrza.

Urządzenia pomiarowe CAPBs<sup>®</sup> to system modułowy, oznacza to, że różne głowice pomiarowe mogą być podłączone do jednego uchwytu bazowego. Skutkuje to niezliczonymi możliwościami zastosowań.



| 1 | Dioda LED                                  |
|---|--------------------------------------------|
| 2 | Przycisk wielofunk-<br>cyjny               |
| 3 | Magnesy                                    |
| 4 | Przycisk zwalniający<br>głowice CAPBs sens |
| 5 | Komora baterii                             |
| 6 | Gniazdo głowicy<br>CAPBs sens              |

#### Budowa

#### Statusy diody LED

| Status diody LED                                     | Znaczenie                                                                                                                                                                                                                        |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Migająca niebieska                                   | CAPBs szuka połączenia Bluetooth Smart                                                                                                                                                                                           |  |
| Migająca zielona                                     | CAPBs połączony                                                                                                                                                                                                                  |  |
| Szybko migająca zielona                              | Pomiar zakończony – dostępne są dane po-<br>miarowe, tryb Hold                                                                                                                                                                   |  |
| Szybko migająca żółta                                | Faza nastawienia                                                                                                                                                                                                                 |  |
| Migająca żółta                                       | Tryb pomiarowy                                                                                                                                                                                                                   |  |
| Migająca biała                                       | Pomiar zakończony – dostępne są dane po-<br>miarowe                                                                                                                                                                              |  |
| Migająca purpurowa                                   | Rejestrator danych aktywny                                                                                                                                                                                                       |  |
| Migająca czerwona                                    | Błąd czujnika                                                                                                                                                                                                                    |  |
| Szybko migająca czerwona                             | CAPBs połączony, brak czujnika CAPBs sens                                                                                                                                                                                        |  |
| Szybko migająca purpurowa                            | CAPBs niepołączony, brak czujnika CAPBs<br>sens                                                                                                                                                                                  |  |
| Migająca czerwona i sygnał<br>dźwiękowy co 10 sekund | Niski poziom baterii                                                                                                                                                                                                             |  |
| Sygnał dźwiękowy<br>(brzęczyk)                       | W zależności od zastosowania (GS10, CO30),<br>uchwyt bazowy CAPBs emituje wyraźny sy-<br>gnał dźwiękowy.<br>Sygnał dźwiękowy może zostać włączony lub<br>wyłączny z poziomu głównego menu w pro-<br>gramie pomiarowym urządzenia |  |

#### System modułowy z uchwytem bazowym CAPBs<sup>®</sup> STm

Nowe urządzenia AFRISO CAPBs<sup>®</sup> tworzą modułowy system składający się z uniwersalnego uchwytu CAPBs<sup>®</sup> STm oraz ze specyficznych dla różnych zastosowań głowic pomiarowych CAPBs<sup>®</sup> sens dla różnych parametrów fizycznych. Uchwyt CAPBs<sup>®</sup> STm pozwala umieścić w nim różne moduły głowic pomiarowych CAPBs<sup>®</sup> sens. Uchwyt w połączeniu z dowolnym modułem głowicy pomiarowej tworzy kompletne urządzenie pomiarowe CAPBs<sup>®</sup>.

W przedniej części znajduje się wielofunkcyjny przycisk włączania/wyłączania, ustawiania punktu zero, aktywowania funkcji Hold lub uruchomiania funkcji rejestratora danych. Wielokolorowa dioda LED za pomocą koloru i częstotliwości zapalania wskazuje różne stany urządzenia pomiarowego CAPBs<sup>®</sup>.



#### Praca z urządzeniami BlueLine

#### Pierwsze uruchomienie

- 1. Aby włączyć urządzenie CAPBs<sup>®</sup>, wciśnij i przytrzymaj przycisk wielofunkcyjny przez 2 sekundy.
- 3. Wciśnij przycisk Menu / Enter, aby uruchomić Menu Główne w programie pomiarowym.
- 4. Przejdź do: Ustawienia -> Bluetooth SMART i uruchom wyszukiwanie Bluetooth. Wyszukiwanie Bluetooth trwa około 30 sekund – urządzenie CAPBs<sup>®</sup> musi być w tym czasie włączone. Znalezione urządzenia CAPBs<sup>®</sup> wyświetlane są jako numer seryjny uchwytu bazowego oraz oznaczenie głowicy pomiarowej CAPBs<sup>®</sup> sens.
- 5. Wybierz żądany CAPBs<sup>®</sup> i wciśnij przycisk Menu / Enter", aby ustanowić połączenie. Kiedy połączenie jest ustanowione, dioda LED na urządzeniu CAPBs<sup>®</sup> zmienia kolor z niebieskiego na zielony. Wybrany CAPBs<sup>®</sup> jest teraz sparowany z urządzeniem BlueLine i w przyszłości połączenie będzie następowało automatycznie. Wystarczy włączyć CAPBs<sup>®</sup> przed uruchomieniem odpowiedniego programu na urządzeniu BlueLine.

### Ustawienia CAPBs<sup>®</sup>

Urządzenie pozwala na przypisanie konkretnej akcji dla wielofunkcyjnego przycisku urządzenia CAPBs<sup>®</sup> za pomocą pozycji: "Ustawienia -> Bluetooth SMART -> Przyc. CAPB". W zależności od programu pomiarowego dostępne są następujące akcje: Start/Stop, Hold, Punkt Zero, Kasuj Max/Min oraz Rejestrator danych (opcja).

W Szybkim Menu można przełączać się pomiędzy różnymi urządzeniami CAPBs<sup>®</sup> za pomocą pozycji "CAPB".

## 6.2 Tryb pomiaru

#### Wybór programu

Menu prezentuje dostępne programy w postaci symboli. Programy są wybierane za pomocą klawiszy nawigacyjnych. Akceptację wyboru potwierdzamy wciskając przycisk Menu / Enter. Działanie klawiszy opisano w rozdziale 3.1 na stronie 9.



Rys 5: Wybór programu na stronie startowej (przykład: wybór programu "Analiza spalin")

#### Ekran główny



- 1 Pasek stanu
- 2 Wartości pomiarowe
- 3 Pasek informacji
- 4 Pole informacji opcjonalnych
- 5 Wartość mierzona

Rys. 6: Prezentacja ekranu głównego programu "Analiza spalin"

**Pasek stanu** - wyświetla takie parametry jak stan baterii, aktywację funkcji Hold, funkcję druku, funkcję Bluetooth i działanie na karcie MicroSD. Wyświetlanie stanów, zależy od rodzaju pracy i od kryteriów poszczególnych funkcji.

| Symbol             | Znaczenie                                                |
|--------------------|----------------------------------------------------------|
| SD                 | Karta pamięci znajduje się w urządzeniu                  |
|                    | Stan baterii                                             |
| 8                  | Aktywne połączenie Bluetooth <sup>®</sup> SMART          |
| *                  | Nieaktywne połączenie Bluetooth <sup>®</sup> SMART       |
|                    | Dane pomiarowe przesyłane do drukarki<br>EUROprinter     |
| ()=()<br>          | Stan baterii CAPBs®                                      |
| <mark>((-))</mark> | Wyszukiwanie CAPBs®                                      |
| 8                  | Temperatura spalin niższa niż temperatura<br>punktu rosy |
| ço                 | Pompa płucząca CO                                        |

**Pasek informacji** - zawiera informacje na temat obecnego programu pomiarowego, godziny i daty.

**Pole informacji opcjonalnych** - zawiera dodatkowe informacje o odpowiedniej wartości mierzonej, np.: wartość CO2max, lub minimalne i maksymalne wartości pomiarów temperatury, itp.

**Wartość mierzona** – zawiera zmierzoną lub obliczoną wartość pomiarową. W przypadku nie podłączenia któregoś z czujników, pole wyświetlane będzie w kolorze szarym.

#### Menu główne

Wywołanie Menu głównego za pomocą klawisza Menu / Enter. Menu główne zawiera główne funkcje urządzenia, a pozostałe funkcje i ustawienia znajdują się w kolejnych podmenu.



### Menu bezpośredniego dostępu

Drukowanie wartości pomiarowych lub zakończenie programu. Poprzez naciśnięcie przycisku HOLD / Szybki dostęp, wyświetla się menu bezpośredniego dostępu. Zmierzone wartości można wydrukować, naciskając przycisk Menu / Enter lub można zapisać raport z badań na karcie MicroSD wybierając odpowiednią funkcję. Ponadto, można wyłączyć funkcję HOLD, albo zakończyć program pomiarowy i wrócić do podstawowego menu.



W chwili zatwierdzenia polecenia drukowania, równolegle z pomiarem spalin drukowany jest protokół pomiarów ( $\rightarrow$  funkcja multita-

skingu), a więc odbywa się to bez przerywania lub ograniczania pomiarów.

### Wyłączanie urządzenia.

Urządzenie wyłącza się poprzez krótkie wciśnięcie przycisku Włączania / Wyłączania oraz potwierdzenie. Jeżeli uruchomiony był program Analiza spalin lub Pomiar CO w otoczeniu nastąpi automatyczne płukanie sensorów (w tym czasie analizator powinien zasysać czyste powietrze), po którym urządzenie zostanie wyłączone. Płukanie w każdej chwili można przerwać przyciskiem Menu / Enter lub anulować wyłączenie przyciskiem Powrót / Koniec.

### Edytor

Moduł edycyjny używany jest w różnych podmenu w celu ustawienia określonych wartości, na przykład interwału czasowego w funkcji Rejestrator danych.

Ustawienie interwału czasowego w funkcji Rejestrator danych

Aby zmienić interwał czasowy, należy z menu głównego wybrać pozycję "Interwał" i zatwierdzić przyciskiem Menu / Enter. Kolejno podświetlane będą wartości jednostek, dziesiątek i setek, które zmienia się przyciskami nawigacyjnymi. Po ustawieniu żądanej wartości, należy zatwierdzić zmiany przyciskiem Menu / Enter.





## 6.3 Generowanie kodu QR

Za pomocą generowanego przez analizator kodu QR można dokonać transferu wyników pomiarów na tablet bądź smartfon. Można użyć dowolnej aplikacji do kodów QR. Funkcja dostępna jest w następujących programach: Analiza spalin, Pomiar temperatury, Pomiar ciśnienia, Pomiar prędkości przepływu.



# 6.4 Funkcja Rejestrator danych (opcja)

Uruchomienie funkcji Rejestrator danych.

Funkcja Rejestrator danych jest dostępna w menu głównym wybranych programów pomiarowych . Funkcja opisana będzie na przykładzie programu "Pomiar ciśnienia". Do skorzystania z programu niezbędna jest karta MicroSD umieszczona w gnieździe analizatora, na której automatycznie zapisują się zarejestrowane wartości.

Otwórz menu główne za pomocą przycisku Menu / Enter i wybierz funkcję "Rejestrator danych" potwierdzając przyciskiem Menu / Enter.



Aby rozpocząć rejestrację danych należy przy pomocy przycisku Menu / Enter wybrać polecenie "Rozpocznij rejestrację". Na pasku informacji pokazany jest całkowity czas trwania rejestracji danych.



Aby zatrzymać rejestrator danych należy wybrać i zatwierdzić polecenie "Zakończ rejestrację" w podmenu "Rejestrator danych".



Wartości zarejestrowane zapisane będą na karcie MicroSD, w folderze "LOGGER/Date". Nazwą pliku będzie czas rozpoczęcia pomiaru. Co każde 7200 linii urządzenie automatycznie wygeneruje nowy plik rejestracji XML. Przy ustawionym interwale 1 sekunda i karcie pamięci 1 GB możliwa jest rejestracja pomiarów przez okres ok. 2 miesięcy.

<u>Ustawienie interwału czasowego Rejestratora danych.</u>
W module edycji interwał czasowy może być ustawiany w zakresie od 1 ÷ 999 sekund. Procedura jest opisana na stronie 31.

# 6.5 Program "Analiza spalin"

### <u>Uruchomienie programu "Analiza spalin".</u> (kolor menu: zielony)

Po uruchomieniu programu "Analiza spalin" następuje automatyczna kalibracja analizatora spalin. W przypadku "zimnego startu" operacja trwa do 30 sekund.

Po kalibracji pojawia się menu wyboru paliwa. Podświetlone jest ostatnio używane paliwo. W razie potrzeby inne paliwo można wybrać za pomocą klawiszy nawigacyjnych. Wybór należy potwierdzić przyciskiem Menu / Enter.



#### Wyłączanie i ponowne włączanie pompy spalin



W przypadku wyłączenia pompy spalin, symbol pracującej pompy znika z paska informacji, a wartości pomiarowe spalin są wyświetlane w kolorze szarym. Możliwe jest, że niektóre wartości pomiarowe spalin mogą się jednak zmieniać, np. wartość O2 - z powodu braku możliwości dostarczania tlenu do urządzenia. Jeżeli pompa spalin jest przez dłuższy czas wyłączona, należy przeprowadzić ponowną kalibrację na świeżym powietrzu przed kolejnym pomiarem.

# Drukowanie zarejestrowanych wartości (zatrzymane wartości pomiarowe HOLD)

Wejście w menu szybkiego dostępu automatycznie aktywuje funkcję Hold. Należy wybrać w menu polecenie "Drukuj" i je zatwierdzić. W chwili zatwierdzenia polecenia drukowania, rozpoczyna się proces przesyłania danych przez podczerwień z analizatora spalin do drukarki. Należy stosować się do zaleceń zawartych w rozdziale 5.2 str. 22. Wydrukowany zostaje protokół z pomiaru. Aktywacja funkcji Hold (zablokowanie wyświetlanych i drukowanych wartości) podczas procesu drukowania nie zatrzymuje procesu analizy spalin.

| 21.0 Vol. %                                   | 21.0 Vol. %                           | 21.0 Vol. %                                   |
|-----------------------------------------------|---------------------------------------|-----------------------------------------------|
| O CO ppm                                      | II Shortcut Menu<br>IPrint<br>QR-Code | →■ O co ppm                                   |
| O ppm                                         | Save Hold ©<br>Pump ©<br>Draft F      | O ppm                                         |
| 21.3 <sup>Tair</sup>                          | Quit Measurement                      | 21.6 Tair                                     |
| Fluegas     04.04.14       No.2 Oil     08:07 | Fluegas 04.04.14<br>No.2 Oil 08:11    | Fluegas     04.04.14       No.2 Oil     08:11 |

#### Wyszukiwanie rdzenia spalin

Funkcja ta stanowi graficzny wskaźnik trendu zmian temperatury spalin oraz umożliwia znalezienie miejsca, w którym temperatura spalin jest najwyższa. Najmniejsze zmiany temperatury spalin są wyświetlane w formie słupka wychylającego się w prawo lub w lewo.

| 21.0 <sup>°2</sup><br>Vol. %                  | HOLD 21.0 Vol. %                               | HOLD 21.0 02 Vol. %                |
|-----------------------------------------------|------------------------------------------------|------------------------------------|
| O co                                          | → ■ Main Menu<br>Hold ●<br>Pump ○<br>CO Pump ○ | Corestream                         |
| O ppm                                         | Measdata                                       | Tgas 23°C                          |
| 21.3 <sup>Tair</sup>                          | Corestream Settings                            |                                    |
| Fluegas     04.04.14       No.2 Oil     08:07 | Fluegas 04.04.14<br>No.2 Oil 08:26             | Fluegas 04.04.14<br>No.2 Oil 08:26 |
#### Pomiar ciągu kominowego

Aby pomiar był miarodajny należy określić punkt zerowy (wartość początkowa w odniesieniu do ciśnienia atmosferycznego). W tym celu należy przed każdym pomiarem ciągu kominowego zdjąć z przyłącza oznaczonego na obudowie analizatora spalin "P" przewód ciągu kominowego (kolor niebieski końcówki przewodu elastycznego). Następnie wybrać z menu opcję "Zeruj ciąg". Wówczas ponownie należy połączyć przewód ciągu kominowego z analizatorem spalin i przeprowadzić pomiar.



Aby wynik pomiaru ciągu kominowego mógł być wydrukowany na protokole z analizy spalin należy po prowadzeniu pomiaru ciągu kominowego wybrać opcję "Pobierz ciąg" i zatwierdzić wybór wciskając przycisk Menu / Enter. Wówczas wynik pomiaru ciągu kominowego na ekranie głównym programu analizy spalin zmieni kolor z czerwonego na czarny.











### 6.6 Program "Pomiar CO w otoczeniu"

# Analizator spalin MULTILYZER STx nie jest przeznaczony do pomiarów związanych z bezpieczeństwem ludzi!

UWAGA



- Kalibracja powinna być prowadzona tylko na świeżym, wolnym od zanieczyszczeń i CO powietrzu, tj. poza miejscem pomiaru!
- W przypadku wykrycia szkodliwych stężeń CO należy natychmiast podjąć odpowiednie środki bezpieczeństwa - ewakuować osoby ze strefy zagrożenia, zapewnić wentylację świeżym powietrzem, ostrzec ludzi o zagrożeniu, wyłączyć urządzenia grzewcze.

#### <u>Uruchomienie programu "Pomiar CO w otoczeniu"</u> (kolor menu: zielony)

Po uruchomieniu programu "Pomiar CO w otoczeniu" następuje automatyczna kalibracja, w przypadku "zimnego startu" (uruchomieniu analizatora spalin po dłuższym okresie) operacja trwa do 30 sekund. Po kalibracji pomiar CO rozpocznie się automatycznie



#### Konfiguracja poziomów alarmu

Wymagane przez użytkownika progi alarmu powinny zostać określone w zakresie nominalnego zakresu pomiarowego analizatora.



Jeżeli zmierzona wartość przekracza pierwszy próg alarmowy CO, urządzenie wzbudza alarm dźwiękowy, a jeżeli wartość CO przekracza drugi próg alarmowy, zostaje ona wyświetlana w kolorze czerwonym – alarm dźwiękowy jest również włączony.

Przykład:

- 1. Alarm CO 1 : 30 ppm (tylko alarm dźwiękowy)
- 2. Alarm CO 2: 100 ppm (alarm dźwiękowy i czerwona czcionka wartości stężenia)





### 6.7 Program "Pomiar temperatury"

### <u>Uruchomienie programu "Pomiar temperatury"</u> (kolor menu: niebieski)

Po uruchomieniu programu "Pomiar temperatury" wyświetlone zostają zmierzone wartości temperatury z podłączonych czujników oraz związane z nimi wartości różnicy temperatur oraz wartość max / min. W menu głównym można skasować wartości max / min oraz zmienić jednostkę temperatury.



Kasowanie wartości max / min





#### Drukowanie / zapisywanie protokołu, kończenie pomiaru

Po wciśnięciu przycisku HOLD wyświetla się menu szybkiego dostępu. Zmierzone wartości można wówczas wydrukować, naciskając przycisk Menu / Enter lub zapisać raport z pomiaru na karcie pamięci Micro SD.

Ponadto, można włączyć lub wyłączyć funkcję Hold, albo zakończyć pomiar i wrócić do strony startowej analizatora spalin.



### 6.8 Program "Pomiar ciśnienia"

### <u>Uruchomienie programu "Pomiar ciśnienia"</u> (kolor menu: żółty)

Po uruchomieniu programu "Pomiar ciśnienia" najpierw następuje automatyczne zerowanie czujnika ciśnienia. Procedura zerowania trwa kilka sekund. Po przeprowadzaniu procedury czcionka wartości ciśnienia zmienia się z szarej na czarną. Czarna czcionka wskazuje na gotowość urządzenia pomiarowego do pracy. Zerowanie wartości ciśnienia można również uruchomić ręcznie z menu głównego, wybierając opcję "Punkt Zero". Oprogramowanie zapisuje i wyświetla również maksymalne i minimalne wskazanie ciśnienia oraz wysokość ciśnienia atmosferycznego.





#### Częstotliwość pomiaru ciśnienia

Częstotliwość pomiaru ciśnienia można zmieniać w menu głównym. Do wyboru są ustawienia "Wolno" i "Szybko". Próbkowanie ciśnienia przy zastosowaniu opcji "Szybko" odbywa się dwukrotnie częściej.





#### Konfiguracja poziomów alarmu

Wymagane przez użytkownika progi alarmu powinny zostać określone w zakresie nominalnego zakresu pomiarowego urządzenia.

Po przekroczeniu progu alarmu zmierzona wartość jest wyświetlana na czerwono, a urządzenie wzbudza alarm dźwiękowy.





#### Drukowanie / zapisywanie protokołu, kończenie pomiaru

Po wciśnięciu przycisku HOLD wyświetla się menu szybkiego dostępu. Zmierzone wartości można wówczas wydrukować, naciskając przycisk Menu / Enter lub zapisać raport z pomiaru na karcie pamięci Micro SD.

Ponadto, można włączyć lub wyłączyć funkcję Hold, albo zakończyć pomiar i wrócić do strony startowej analizatora spalin.



W chwili zatwierdzenia polecenia drukowania, rozpoczyna się proces przesyłania danych przez podczerwień z analizatora spalin do drukarki. Aktywacja funkcji Hold (zablokowanie wyświetlanych i drukowanych wartości) podczas procesu drukowania nie zatrzymuje pomiaru.

### 6.9 Program "Spadek ciśnienia"

#### <u>Uruchomienie programu "Spadek ciśnienia"</u> (Kolor menu: żółty)

Po uruchomieniu programu "Spadek ciśnienia" najpierw następuje automatyczne zerowanie czujnika ciśnienia. Procedura zerowania trwa kilka sekund. Po przeprowadzaniu procedury czcionka wartości ciśnienia zmienia się z szarej na czarną. Czarna czcionka wskazuje na gotowość urządzenia pomiarowego do pracy.



Ustawienie czasu trwania testu

Zmień czas trwania testu za pomocą przycisków nawigacyjnych.



#### Podłączenie analizatora MULTILYZER<sup>®</sup> STx do instalacji

Instalacja, na której ma być dokonywany pomiar spadku ciśnienie musi być szczelnie połączona z analizatorem. Po osiągnięciu w instalacji wymaganego ciśnienia za pomocą pompki, należy uruchomić pomiar spadku ciśnienia za pomocą komendy "START" w menu głównym. Licznik na ekranie programu pomiarowego wskazuje czas, który upłynął od rozpoczęcia pomiaru w sekundach i minutach.



Po upłynięciu nastawionego czasu o zakończeniu pomiaru świadczy sygnał dźwiękowy oraz na pasku informacji pojawia się informacja o zatrzymaniu programu. Wyświetlony jest również czas trwania pomiaru. Wyniki pomiarów znajdują się na wyświetlaczu, raport z pomiarów może zostać wydrukowany, bądź zapisany na karcie MicroSD.



### 6.10 Program "Pomiar wycieku" (opcja)

### <u>Uruchomienie programu "Pomiar wycieku"</u> (Kolor menu: żółty)

Po uruchomieniu programu "Pomiar wycieku" najpierw następuje automatyczne zerowanie czujnika ciśnienia. Procedura zerowania trwa kilka sekund. Po przeprowadzaniu procedury czcionka wartości ciśnienia zmienia się z szarej na czarną. Czarna czcionka wskazuje na gotowość urządzenia pomiarowego do pracy. Zerowanie wartości ciśnienia można również uruchomić ręcznie z menu głównego, wybierając opcję "Punkt Zero".



Należy ustawić czas nastawienia za pomocą trybu edycji.



Następnie potwierdzić ustawienie czasu nastawiania komendą "Dalej" oraz ustawić czas pomiaru po czym raz jeszcze potwierdzić komendą "Dalej". W kolejnym kroku należy uruchomić pomiar za pomocą komendy "START".



Pomiar wycieku rozpoczyna się fazą nastawienia i po ustawionym czasie zacznie się pomiar ciśnienia. Licznik na ekranie programu pomiarowego wskazuje czas, który upłynął od rozpoczęcia pomiaru w sekundach i minutach.

Po upłynięciu nastawionego czasu i zakończeniu pomiaru informuje sygnał dźwiękowy oraz na pasku informacji pojawia się informacja o zatrzymaniu programu.



Wyniki pomiarów znajdują się na wyświetlaczu, raport z pomiarów może zostać wydrukowany, bądź zapisany na karcie MicroSD.

### 6.11 Program "Pomiar wielkości wycieku" (opcja)

#### <u>Uruchomienie programu "Pomiar wielkości wycieku"</u> (Kolor menu: żółty)

Po uruchomieniu programu "Pomiar wycieku" najpierw następuje automatyczne zerowanie czujnika ciśnienia. Procedura zerowania trwa kilka sekund. Po przeprowadzaniu procedury czcionka wartości ciśnienia zmienia się z szarej na czarną. Czarna czcionka wskazuje na gotowość urządzenia pomiarowego do pracy. Zerowanie wartości ciśnienia można również uruchomić ręcznie z menu głównego, wybierając opcje "Punkt Zero".



Istnieje możliwość ręcznego wprowadzenia pojemności instalacji lub urządzenie może ją wyliczyć automatycznie.

#### Ręcznie:

Jeżeli znana jest pojemność instalacji należy wybrać opcję "Ręczna pojemność" i użyć edytora do ustawienia pojemności.

|                                                                          | , , , , , , , , , , , , , , , , , , ,                                                | 5                                          |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                          |                                                                                      | se 🥵 💷                                     |
| 0.00 Pressure hPa                                                        | 0.00 Pressure hPa                                                                    | 0.00 Pressure hPa                          |
| Measconfiguration<br>Set or measure<br>pipeline volume<br>Actual value I | ►I Volume   Enter vol. manually ○   RefVol. 196 ml   Meas. time 01 min   START meas. | Volume<br>Enter vol. manually ()           |
| Next<br>Quit                                                             | Start pressure hPa<br>End press hPa<br>Volume I                                      | Volume I                                   |
| Leakage rate 22.01.15<br>measurement 15:58                               | Leakage rate 22.01.15<br>measurement 15:59                                           | Leakage rate 22.01.15<br>measurement 15:59 |





#### Automatycznie:

Aby poznać pojemność instalacji należy połączyć instalację z urządzeniem zaczynając od połączenia zaworu odcinającego (1) z analizatorem. Następnie podłączyć złącze (2) do instalacji. Otworzyć zawór odcinający (1) i za pomocą pompki (4) doprowadzić ciśnienie (ciśnienie robocze) do systemu. W tym przykładzie 4,80 hPa.



Następnie należy zamknąć zawór odcinający (1) i podpiąć strzykawkę (3) do zaworu odcinającego (1). Najlepiej jest podpiąć strzykawkę już napełnioną powietrzem.



W kolejnym kroku należy wprowadzić pojemność strzykawki (3) do pola "Poj. odnieś." (pojemność strzykawki AFRISO wynosi 108 ml) oraz czas pomiaru.

Za pomocą komendy "START" uruchomić pomiar. Otworzyć zawór odcinający (1) i dodać (lub odjąć) pojemność strzykawki (3). Zamknąć zawór odcinający (1) i potwierdzić zmiany komendą

"Potwierdź zmiany". Rozpocznie się kalkulacja, która zakończy się automatycznie po upływie wcześniej ustawionego czasu.



Urządzenie wyświetla obliczoną pojemność instalacji w ostatniej linii. Należy potwierdzić objętość i kontynuować konfigurację za pomocą komendy "Dalej".



Ustawić czas nastawienia za pomocą edytora i potwierdzić za pomocą komendy "Dalej".



MULTILYZER® STx

Ustawić czas pomiaru za pomocą edytora i potwierdzić komendą "Dalej". Następnie ustawić ciśnienie robocze stosownie do ciśnienia bieżącego. Orientacyjna wartość bieżąca jest wystarczająca. W następnym kroku należy wybrać mierzone medium. Dostępne media to powietrze lub gaz.



Istnieje możliwość wprowadzenia ciśnienia atmosferycznego zarówno ręcznie, jak i może być zmierzone przez urządzenie. Aby aktywować ciśnienie atmosferyczne zmierzone przez urządzenie należy odznaczyć opcję "Ręczne ciśn. atm.".



Pomiar wielkości wycieku rozpoczyna się fazą nastawienia i po ustawionym czasie zacznie się pomiar ciśnienia. Licznik na ekranie programu pomiarowego wskazuje czas, który upłynął od rozpoczęcia pomiaru w sekundach i minutach.

O upłynięciu nastawionego czasu o zakończeniu pomiaru informuje sygnał dźwiękowy oraz na pasku informacji pojawia się informacja o zatrzymaniu programu.



Wyniki pomiarów znajdują się na wyświetlaczu, raport z pomiarów może zostać wydrukowany, bądź zapisany na karcie MicroSD.



### 6.12 Program "Pomiar prędkości przepływu"

 <u>Uruchomienie programu "Pomiar prędkości przepływu"</u> (Kolor menu: pomarańczowy)

Po uruchomieniu programu "Pomiar prędkości przepływu" najpierw następuje automatyczne zerowanie czujnika ciśnienia. Procedura zerowania trwa kilka sekund. Po przeprowadzaniu procedury czcionka wartości ciśnienia zmienia się z szarej na czarną. Czarna czcionka wskazuje na gotowość urządzenia pomiarowego do pracy. Zerowanie wartości ciśnienia można również uruchomić ręcznie z menu głównego, wybierając opcję "Punkt Zero.

Na ekranie głównym wyświetlone są następujące parametry:

- Przepływ (m/s, km/h)
- Objętość (m³/h, l/s, m³/s)
- Ciśnienie (hPa)
- Ciśnienie atmosferyczne (hPa)

Aby urządzenie mogło skompensować pomiar przepływu względem temperatury musi być wpięty czujnik temperatury do gniazda T2.



 Wprowadzanie danych pomiarowych (jednostek, współczynnika K rurki Pitota, kształtu i rozmiaru komina)

Wprowadzone wartości są niezbędne do poprawnego wykonania pomiaru przepływu.

Podmenu "Jednostki" umożliwia ustawienie jednostek, w jakich wyświetlane będą wartości przepływu oraz objętości.

Współczynnik K rurki Pitota jest ustawiany z poziomu menu głównego, przyjęta domyślnie wartość to 1.00.

Podmenu "Objętość" umożliwia określenie kształtu komina. Do wyboru są dwie opcje: "Okrągły" oraz "Prostokątny". W przypadku wy-

brania opcji "Okrągły", pojawi się okno do uzupełnienia średnicy komina. W przypadku wybrania opcji "Prostokątny" należy uzupełnić wymiary, w celu określenia przekroju poprzecznego. W przypadku wybrania opcji "Nieaktywny" pomiar strumienia objętościowego nie jest dokonywany.



## 7 Menu konfiguracji "Ustawienia"

#### <u>Uruchomienie menu konfiguracji "Ustawienia"</u>

(kolor menu: fioletowy)

Menu konfiguracji "Ustawienia" można uruchomić z strony startowej analizatora spalin lub z menu głównego każdego wybranego wcześniej programu pomiarowego.



Schemat włączania menu konfiguracji w programie "Analiza spalin".



### 7.1 Ustawienie czasu i daty

#### Zmiana ustawień czasu i daty.

Aby zmienić np. miesiąc należy wybrać za pomocą klawiszy nawigacyjnych linię "Miesiąc" i wcisnąć przycisk Menu / Enter. Wybranie będzie zasygnalizowane niebieskim kolorem obwiedni. Wybraną wartość należy zmienić za pomocą przycisków nawigacyjnych, następnie należy ją zatwierdzić przyciskiem Menu / Enter. Po ustawieniu właściwej daty i godziny należy w właściwej opcji oznaczyć jeśli ustawiony czas jest czasem letnim. Istniej także możliwość zmiany wyświetlania czasu w systemie 24-godzinnym lub 12-godzinnym oraz zmiana formatu wyświetlania daty – do wyboru jest kilka możliwości.

| SD 😥 💷           |                   | SD 🕺 👔 |                    |                |            |
|------------------|-------------------|--------|--------------------|----------------|------------|
|                  |                   |        |                    |                |            |
| Settings         |                   | →≣     |                    | Time/Date      |            |
| Time/Date        |                   |        | Hours              | 13             |            |
| Language         | L.                |        | Minutes            | 38             |            |
| Display          |                   |        | Day                | 04             |            |
| Keyboard         | •                 |        | Month              | 04             |            |
| Bluetooth SMART  | •                 |        | Year               | 2014           |            |
| Factory Settings | •                 |        | Summer-/Wintertime |                | 0          |
|                  |                   |        | Time:              | 24h            | -          |
|                  |                   |        | Date:              | DD.MM.YY       | -          |
| Settings         | 04.04.14<br>13:38 |        | Settin             | gs 04.0<br>13: | 4.14<br>39 |

### 7.2 Ustawienia ekranu

#### Ustawienie jasności ekranu

Możliwe do ustawienia są 4 konfiguracje ustawienia jasności ekranu: 25%, 50%, 75% i 100%. W zależności od ustawionej jasności zmieniają się osiągi akumulatora.



Inteligentne zarządzanie zużyciem energii pozwala zoptymalizować czas pracy akumulatora.

Tryb "Eco" obniża intensywność podświetlenia, zmniejszając zużycie energii.



Zmiana wielkości wyświetlanych wartości

Dostępne są dwie wielkości wyświetlania:

- 4 linie: standardowe ustawienie
- 8 linii: mniejsza czcionka wyświetla dwa razy więcej wartości pomiarowych na ekranie



Ustawienie "Automatyczny widok" na przykładzie programu pomiarowego "Analiza spalin".



Aktywowanie "Trybu Zoom"

Wartości pomiarowe mogą być wyświetlane dwa razy większe:



"Tryb Zoom" na przykładzie programu "Pomiar ciśnienia":



### 7.3 Ustawienie przycisku "Ulubione"

#### Konfiguracja przycisku "Ulubione"

Do przycisku "Ulubione" można przypisać jedną z kilku różnych funkcji: Hold, Kod QR, Zapisz, Pompa, Pompa CO, Rejestrator danych (opcja) i Ciąg.



### 7.4 Ustawienia dźwięków

<u>Ustawienie dźwięku klawiszy i dźwięku alarmu.</u>

Dla dźwięku klawiszy i oddzielnie dla dźwięku alarmu dostępne są cztery możliwości ustawienia poziomu głośności:

- 1. Wył.
- 2. Cichy
- 3. Średni
- 4. Głośny



### 7.5 Informacje o urządzeniu

#### Wywołanie danych informacyjnych

Aby wyświetlić informacje ogólne o urządzeniu, należy w menu startowym analizatora wcisnąć przycisk HOLD lub wybrać menu "Info" z zakładki "System". Menu "Info" zawiera takie informacje jak: wersja oprogramowania, data jego wydania oraz numer seryjny urządzenia.



Wywołanie danych diagnostycznych

Aby wyświetlić diagnostyczne dane urządzenia, należy w menu startowym analizatora wcisnąć przycisk HOLD. W menu "Diagnostyka" znajdują się parametry baterii - napięcie, napięcie ładowania, temperatura (tylko podczas ładowania). Parametry "Stat" i "Sys" są parametrami serwisowymi.



### 8 Obsługa i struktura pamięci na karcie MicroSD, menu "Pamięć"

### 8.1 Tworzenie bazy danych

Pomiary mogą zostać bezpośrednio zapisane na folderze przypisanym konkretnemu klientowi. Każdy z folderów posiada 8 wierszy, w każdym po 20 znaków. Pierwszy wers zarazem jest tytułem folderu oraz nazwą wyszukiwaną w wyszukiwarce. Następne wersy są w celu umiejscowienia szczegółowych informacji o kliencie (adres, dane kontaktowe). Informacje o kliencie będą wyświetlane na każdym wydruku.

Baza danych może być utworzona bądź zmodyfikowana bezpośrednio przy użyciu analizatora, bądź z poziomu komputera.

Przy pierwszym użyciu karty MicroSD, użytkownik powinien utworzyć nową bazę danych pomiarowych

Aby utworzyć nową bazę danych należy w menu "Pamięć" wybrać opcję "Utwórz bazę danych", a następnie zatwierdzić komunikat ostrzegawczy "Tak".

| 5D 🚯 💷                    | SD                                               |                   | SD                             | 2 🗕 🎟             |
|---------------------------|--------------------------------------------------|-------------------|--------------------------------|-------------------|
| Pressure loss measurement |                                                  |                   |                                |                   |
| Pitot-<br>measurement     | Memory Scan Create Database Import File Add Carb |                   | Create Database                | e                 |
| Settings                  | Aud Capb                                         |                   | All entries<br>will be deleted |                   |
| SD Memory                 |                                                  |                   | No<br>Yes                      |                   |
|                           | Memory                                           | 09.04.14<br>13:21 | Memory                         | 09.04.14<br>13:21 |

Po wykonaniu powyższej procedury zostanie wygenerowany plik o nazwie "DATABASE.CSV. W tym pliku zapisywane będą wszystkie przyszłe wpisy. Utworzenie bazy będzie trwać kilka sekund.

INFO

Wcześniej stworzona struktura pamięci zostanie skasowana! Prywatne pliki użytkownika (np. zdjęcia, dokumenty itp.) nie zostaną usunięte!

#### Utworzenie nowego klienta / modyfikacja danych klienta W celu utworzenia nowego klienta / modyfikacji danych istniejącego już klienta należy wybrać polecenie "Przeglądaj" z menu "Pamięć" i wpisać nazwę klienta: SD 💦 SD 🛞 💷 Memory Memory Scan Scan b Create Database Þ Import File Þ MEM\_01 <ABC> MEM\_02 0123456789 Add Capb ABCDEFGHIJ **MEM\_03** • **MEM** 04 -KLMNOPQRST UVWXYZ[]\_ **MEM 05** . Page 2/2 **Delete Character** OK 09.04.14 09.04.14 09.04.14 Memory Memory SD SD 13:21 13:22 13:23

Po wybraniu odpowiedniego rzędu należy zatwierdzić go przyciskiem Menu / Enter. Następnie przy pomocy przycisków nawigacyjnych należy wybrać literę i zatwierdzić swój wybór:



MULTILYZER® STx

Podczas wpisywania tekstu istnieje możliwość przełączenia pomiędzy wielkimi i małymi literami. W tym celu należy zaznaczyć symbol "<ABC>" lub "<abc>". Polecenie "Usuń znak" spowoduje usunięcie ostatniego wpisanego znaku. Za pomocą przycisku "OK" nazwa klienta zostanie zatwierdzona. Jeżeli dana nazwa istnieje w bazie – zostanie ona wyświetlona. Jeżeli nie istnieje – będzie możliwość dodania jej do bazy po wybraniu polecenia "Nowy wpis".



W tym miejscu istnieje możliwość dodania dodatkowych informacji (danych adresowych oraz kontaktowych):


Zachowania poszczególnych linii dokonujemy przy użyciu przycisku "OK". Ostatecznie całą nazwę zapisujemy przy użyciu komendy "Zapisz zmiany.



Aby usunąć danego klienta z bazy należy wybrać klienta i potwierdzić opcją "Przeglądaj", jeżeli nie ma zapisanych żadnych pomiarów w bazie danego klienta, pojawia się następująca informacja "Brak wpisu. Usuń?". Potwierdzenie polecenia powoduje usunięcie danej firmy z bazy. W innym wypadku należy w pierwszej kolejności usunąć wszystkie zapisane pomiary.

| <u>50</u> 😵 🚥                                    |                                                               | <b>1</b>                                                      |
|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| S S S S S S S S S S S S S S S S S S S            | SYSTRONIK GmbH<br>Gewerbestr. 57<br>88636 Illmensee<br>*<br>* | Memory<br>SYSTRONIK GmbH<br>Gewerbestr. 57<br>88636 Illmensee |
| Gewerbestr. 57 09.04.14<br>88636 Illmensee 14:01 | Save changes Scan New File 09.04.14 14:01                     | Entry is empty<br>delete ?<br>No Yes                          |

<u>Utworzenie nowego klienta / modyfikacja danych klienta z poziomu komputera</u>

Istnieje także możliwość utworzenia nowego klienta / modyfikacji danych klienta z poziomu komputera. W celu dokonania jakichkolwiek zmian należy otworzyć plik "DATABASE.CSV" na karcie MicroSD. Plik jest w formie arkusza kalkulacyjnego, gdzie w kolejnych kolumnach wpisuje się dane klienta. Kolumna "A" jest nazwą firmy, która będzie pojawiać się w wyszukiwarce, kolumny B – H służą do dodania dodatkowych informacji dotyczących klienta. W każdej kolumnie może znaleźć się maksymalnie 20 znaków. Nie należy używać znaków specjalnych innych niż "@", "\_" oraz ".



►



Niewłaściwe wpisanie nazw w pliku "DATABASE.CSV" skutkować będzie błędami po próbie otworzenia w analizatorze MUL-TILYZER STx.

| A  | A1 🔹 : 🗙 🗸 $f_{x}$ SYSTRONIK GmbH |                |                              |                           |             |
|----|-----------------------------------|----------------|------------------------------|---------------------------|-------------|
|    | А                                 | в              | с                            | D                         | E           |
| 1  | SYSTRONIK GmbH                    | Gewerbestr. 57 | 88636                        | IIImensee                 |             |
| 2  | Essie                             | Vaill          | Litronic Industries          | 14225 Hancock Dr          | Anchorage   |
| 3  | Cruz                              | Roudabush      | Meridian Products            | 2202 S Central Ave        | Phoenix     |
| 4  | Billie                            | Tinnes         | D M Plywood Inc              | 28 W 27th St              | New York    |
| 5  | Zackary                           | Mockus         | Metropolitan Elevator Co     | 286 State St              | Perth Amboy |
| 6  | Rosemarie                         | Fifield        | Technology Services          | 3131 N Nimitz Hwy -105    | Honolulu    |
| 7  | Bernard                           | Laboy          | Century 21 Keewaydin Prop    | 22661 S Frontage Rd       | Channahon   |
| 8  | Sue                               | Haakinson      | Kim Peacock Beringhause      | 9617 N Metro Pky W        | Phoenix     |
| 9  | Valerie                           | Pou            | Sea Port Record One Stop Inc | 7475 Hamilton Blvd        | Trexlertown |
| 10 | Lashawn                           | Hasty          | Kpff Consulting Engineers    | 815 S Glendora Ave        | West Covina |
| 11 | Marianne                          | Farman         | Albers Technologies Corn     | 6220 S Orange Blossom Trl | Orlando     |

Ostatecznie plik "DATABASE.CSV" powinien zostać zapisany. Następnie przed zaimportowaniem danych należy uruchomić ponownie analizator. Dzięki temu nowa baza danych zostanie automatycznie wczytana.

### 8.2 Sposób zapisu danych

Korzystanie z karty pamięci MicroSD, jako niezależnego od systemu nośnika danych pozwala na większą elastyczność podczas przechowywania i zarządzania danymi pomiarowymi. Karta może zostać odczytana bezpośrednio na dowolnym urządzeniu obsługującym karty pamięci MicroSD bez dodatkowego oprogramowania. Pliki mogą zostać otworzone używając przeglądarki internetowej.





#### Uszkodzenie gniazda karty MicroSD z powodu złego użycia.



Struktura pamięci analizatora MULTILYZER STx umożliwia wykonanie 1000 wpisów, z czego w każdym 10 pomiarów może być zapisanych. Daje to łącznie możliwość zapisania 10000 pomiarów. Nazwa pliku jest przydzielana automatycznie przez urządzenie i ma następującą strukturę:



#### UWAGA



Plik jest zabezpieczony przed dokonywaniem zmian. Jeżeli jakakolwiek zmiana w pliku zostanie dokonana, plik ten nie będzie mógł być zarówno wyświetlony jak i wydrukowany!

Zapisany plik można wyświetlić, wydrukować lub zastąpić nowym pomiarem.



Nazwa pliku oraz podfolder, w którym się znajduje pokazany jest na pasku informacji. Poniżej znajduje się przykład: folder MEMO-RY/0000 i nazwa pliku 0000\_01.txt:



Informacje o kliencie zostaną wyświetlone w nagłówku wydruku. Zapisany plik może być również wyświetlony z poziomu komputera w przeglądarce internetowej (takiej jak Mozilla FireFox.)



### 8.3 Wprowadzenie adresu użytkownika

Aby zaimportować adres użytkownika, należy utworzyć plik "Address.txt" na karcie MicroSD. Jest to czysty plik tekstowy z rozszerzeniem .txt. Plik tekstowy można utworzyć za pomocą dowolnego edytora (np. Notatnika) na komputerze PC. Możliwych jest maksymalnie 8 linii na 22 znaki.

INFO Istniejący adres użytkownika zostanie zastąpiony! Skopiuj na AFRISO-EURO-INDEX GmbH kartę MicroSD Karte kopieren Lindenstr. 20 74363 Güglingen Tel. 07135/102-190 Fax 07135/102-147 www.afriso.de 🎫 👔 🚥 SD 🛞 🎫 Pressure loss measurement Memory Import File Scan ADDRESS.TXT Pitot-Create Database measurement Import File h Add Capb Settings Memory 09.04.14 09.04.14 Memory Memory 16:50 16:50 AFRISO-EURO-INDEX GmbH Lindenstr. 20 74363 Güglingen Tel. 07135/102-190 Fax 07135/102-147 www.afriso.de ))) Gerät MULTILYZER STx Geräte Nr. 01-65-0000 BlmSchV Messung Brennstoff: Heizöl



# 9 Akumulator

### 9.1 Praca na akumulatorze / ładowarce

- <u>Praca na akumulatorze:</u> podczas pracy na akumulatorze czas pracy analizatora w trybie ciągłego pomiaru zależy od wybranych ustawień ekranu. Ustawienie jasności ekranu na 25% umożliwia ciągły pomiar do 12 godzin, każde wyższe ustawienie jasności ekranu skraca czas pracy analizatora. Tryb "Eco" pozwala na dłuższa pracę urządzenie poprzez obniżenie jasności ekranu przy niskim stanie akumulatora.
- <u>Ładowanie:</u> zewnętrzna ładowarka USB 100-240 V~/50-60 Hz. Inteligentne ładowanie akumulatora oznacza zintegrowany system zarządzania ładowaniem.

### 9.2 Ładowanie akumulatora

#### UWAGA

#### Możliwość uszkodzenia akumulatora.



- Do ładowania akumulatora analizatora spalin MULTILYZER STx należy używać tylko oryginalnej ładowarki dostarczonej w zestawie.
- 1. Dostarczoną w zestawie ładowarkę podłączyć do sieci elektrycznej, a następnie do analizatora MULTILYZER STx.
- Ładowanie akumulatora rozpocznie się automatycznie.:



| Zielona | Aktualny poziom nała- |
|---------|-----------------------|
| część   | dowania               |

| Przycisk | Funkcja                     |
|----------|-----------------------------|
| P        | Zamknięcie ekranu ładowania |

- Akumulator może być również stale ładowany podczas pracy pomiarowej i obciążenia systemu.
- Gdy bateria jest w pełni naładowana i ekran ładowania jest aktywny, urządzenie wyłącza się automatycznie, w przeciwnym wypadku urządzenie przechodzi w tryb ładowania podtrzymującego. Ekran ładowania nie jest dłużej wyświetlany.
- Po zakończeniu aktywnego ładowania analizator spalin może pozostać podłączony do ładowarki dowolną ilość czasu bez ryzyka uszkodzenia akumulatora.

### Żywotność I pojemność akumulatora

Analizator spalin MULILYZER STx jest wyposażony w akumulator litowo-jonowy. Jego pojemność i żywotność są zależne głównie od obsługi podczas ładowania i korzystania z urządzenia. Aby zapewnić efektywne ładowanie baterii, urządzenie posiada system zarządzania ładowaniem.

Analizator spalin MULTILYZER STx posiada graficzne przedstawienie poziomu naładowania akumulatora. Wizualizacja wyświetlana na górnym pasku ekranu składa się z trzyczęściowej ikony baterii. Wypełnienie ikony baterii pozwala użytkownikowi ocenić stan jej naładowania.

 Podczas normalnego użytkowania zaleca się, aby nie doładowywać baterii, dopóki nie będzie zupełnie rozładowana.

Ładowanie akumulatora jest możliwe w dowolnym momencie, pod warunkiem, że system zarządzania ładowaniem rozpozna potrzebę ładowania uzupełniającego.

Użytkowanie analizatora spalin MULTILYZER STx w temperaturze otoczenia poniżej +5 °C znacząco obniża żywotność baterii litowojonowych.

## 10 Konserwacja

Zalecamy aby analizator spalin MULTILYZER STx był raz w roku kalibrowany na gazach wzorcowych w autoryzowanym serwisie producenta. Generalny przegląd urządzenia wykonywany przez serwis powinien być przeprowadzany nie rzadziej niż co 24 miesięcy.

Ważnym elementem prawidłowej obsługi analizatora spalin jest utrzymanie jednostki przygotowania spalin w odpowiednim stanie technicznym. Jednostka przygotowania spalin chroni analizator przed wnikaniem takich zanieczyszczeń jak: kurz, sadza czy kondensat. Utrzymanie jednostki przygotowania spalin w odpowiednim stanie technicznym chroni urządzenie przed uszkodzeniem i utratą gwarancji. Zalecamy aby regularnie kontrolować stan filtrów i ilość kondensatu w jednostce przygotowania spalin. Filtry w miarę potrzeby należy wymieniać. Oznaką wskazującą na konieczność wymiany filtra cząstek stałych (element 5 na str. 83) jest jego zabrudzenie po stronie zewnętrznej. Podczas wymiany filtra cząstek stałych należy jednocześnie wymienić filtr membranowy (element 7 na str. 83) części zamienne opisano w rozdziale 13 str. 83.

UWAGA



#### Możliwość uszkodzenia analizatora.

- Filtr cząstek stałych wymieniać jeśli jest zabrudzony po stronie zewnętrznej.
- Filtr membranowy wymieniać zawsze w przypadku wymiany filtra cząstek stałych lub w przypadku uszkodzenia / zabrudzenia.
- Usuwać kondensat z jednostki przygotowania spalin po każdym pomiarze spalin.

#### Wymiana akumulatora

Z przyczyn technicznych zużyty akumulator może być wymieniony tylko przez autoryzowany serwis producenta.



Nie zwierać zacisków przyłączeniowych.

Aby chronić środowisko, baterii nie wolno wyrzucać razem ze zwykłymi domowymi odpadami. Zwróć stare baterie do punktu zakupu lub punktu odbioru.

## 11 Rozwiązywanie problemów

Rozwiązywanie problemów może być podejmowane tylko przez wykwalifikowany i wyszkolony personel.

Serwis i naprawy mogą być wykonywane tylko przez autoryzowany serwis producenta.

| Problem                                 | Możliwa przyczyna                         | Rozwiązanie                                                       |  |  |
|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------------|--|--|
| Komunikat "CO za<br>wysokie"/"Błąd sen- | Defekt sensora<br>CO.                     | <ul> <li>Przepłukać urzą-<br/>dzenie czystym</li> </ul>           |  |  |
| sora CO".                               | Przekroczony za-<br>kres pomiarowy<br>CO. | powietrzem bez<br>oprzyrządowania                                 |  |  |
|                                         | Przekroczona<br>żywotność sen-<br>sora.   | <ul> <li>Dostarczyć urzą-<br/>dzenie do serwi-<br/>su.</li> </ul> |  |  |

| Problem                                                                                           | Możliwa przyczyna                                       | Rozwiązanie                                                                                              |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Błędne pomiary (np.<br>O2 za wysokie, CO2<br>za niskie, brak wska-<br>zania stężenia CO<br>itp.). | Nieszczelny sys-<br>tem pomiarowy.                      | Kontrola jednostki<br>przygotowania<br>spalin pod wzglę-<br>dem pęknięć i in-<br>nych uszkodzeń.         |  |
|                                                                                                   |                                                         | Kontrola przewo-<br>dów pomiarowych<br>pod względem<br>pęknięć i innych<br>uszkodzeń.                    |  |
|                                                                                                   |                                                         | <ul> <li>Kontrola o-ringów<br/>jednostki przygo-<br/>towania spalin.</li> </ul>                          |  |
|                                                                                                   |                                                         | Kontrola o-ringu<br>rurki sondy.                                                                         |  |
| Komunikat "Serwis".                                                                               | Zbliża się okres<br>kolejnego przeglą-<br>du.           | Urządzenie może<br>pracować nadal,<br>jednak należy za-<br>planować prze-<br>gląd analizatora<br>spalin. |  |
| Wartości pomiarowe<br>spalin są wyświetlane<br>zbyt wolno.                                        | Zużyte filtry jed-<br>nostki przygoto-<br>wania spalin. | <ul> <li>Sprawdzić stan<br/>filtrów, z razie po-<br/>trzeby wymienić.</li> </ul>                         |  |
|                                                                                                   | Zagięty przewód<br>pomiarowy.                           | <ul> <li>Sprawdzić prze-<br/>wody pomiarowe.</li> </ul>                                                  |  |
|                                                                                                   | Zanieczyszczona<br>pompa spalin.                        | <ul> <li>Dostarczyć urzą-<br/>dzenie do ser-<br/>wisu.</li> </ul>                                        |  |
| Niestabilna tempera-<br>tura spalin.                                                              | Wilgoć w rurce<br>sondy.                                | <ul> <li>Przeczyścić son-<br/>dę.</li> </ul>                                                             |  |
| Urządzenie samo-<br>czynnie się wyłącza.                                                          | Rozładowany<br>akumulator.                              | <ul> <li>Naładować aku-<br/>mulator.</li> </ul>                                                          |  |
|                                                                                                   | Akumulator uszko-<br>dzony.                             | <ul> <li>Dostarczyć urzą-<br/>dzenie do ser-<br/>wisu.</li> </ul>                                        |  |

 $\triangle$ 

| Problem                                                                                         | Możliwa przyczyna          | Rozwiązanie |                                                                                                                 |
|-------------------------------------------------------------------------------------------------|----------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| Urządzenie nie włą-<br>cza się.                                                                 | Rozładowany<br>akumulator. |             | Naładować aku-<br>mulator.                                                                                      |
|                                                                                                 | Inne uszkodzenie.          |             | Dostarczyć urzą-<br>dzenie do serwi-<br>su.                                                                     |
| Brak wskazania cią-<br>gu kominowego.                                                           | Uszkodzenie czuj-<br>nika  |             | Dostarczyć urzą-<br>dzenie do ser-<br>wisu.                                                                     |
| Zawieszenie się<br>oprogramowania<br>urządzenia i brak<br>reakcji na naci-<br>śnięcia klawiszy. | _                          | •           | Przytrzymać przy-<br>cisk "Włącz / Wy-<br>łącz" przez 6 se-<br>kund w celu wy-<br>konania resetu<br>urządzania. |
| Inne zaburzenia.                                                                                | -                          | •           | Dostarczyć urzą-<br>dzenie do ser-<br>wisu.                                                                     |

# 12 Wyłączenie z eksploatacji, utylizacja



W trosce o ochronę środowiska naturalnego nie wolno wyrzucać wyłączonego z eksploatacji urządzenia razem z nieposegregowanymi odpadami gospodarczymi. Urządzenie należy dostarczyć do odpowiedniego punktu złomowania.

Analizator spalin MULTILYZER STx zbudowany jest z materiałów, które można poddać recyklingowi.

Jeśli nie masz możliwości pozbycia się zużytego urządzenia zgodnie z przepisami ochrony środowiska, skontaktuj się z nami w celu uzyskania możliwości zwrotu.

# 13 Części zamienne i akcesoria

Jednostka przygotowania spalin chroni analizator przed zakłócającymi komponentami, takimi jak kurz, sadza i kondensat.

Wkład filtra kondensatu w dobrym stanie jest osłoną analizatora spalin przed zabrudzeniami i ważną częścią procesu analizy spalin.



| Część zamienna:                                | ArtNr. |
|------------------------------------------------|--------|
| Zestaw filtrów (5x 520919 i 5x 520921)         | 500208 |
| Zestaw o-ringów do połączeń pułapki kondensatu | 511002 |
|                                                |        |
| Części zamienne pułapki kondensatu:            |        |
| (01) Korek wejściowy                           | 520594 |
| (02) Tulejka ze strzałką                       | 520596 |
| (03) Cześć środkowa z cylinderkiem             | 521990 |
| (04) Tulejka "EURO-INDEX"                      | 521778 |
| (05) Filtr cząstek stałych                     | 520919 |
| (06) Korek wyjściowy cz. II                    | 520592 |
| (07) Filtr membranowy                          | 520921 |
| (08) O-Ring 18x3                               | 520365 |
| (09) Korek wyjściowy cz. I                     | 520591 |
|                                                |        |

Sprawdź kompletność i funkcjonalność filtra cząstek stałych, filtra membranowego, przezroczystych tulejek i o-ringów uszczelniających. Po pomiarze odłącz sondę od analizatora, opróżnij kondensat i wymień zużyte filtry!

## 14 Gwarancja

Producent udziela na urządzenie 36 miesięcy gwarancji od daty zakupu z wyłączeniem sensorów elektrochemicznych. Na sensor O2 gwarancja wynosi 5 lat, na pozostałe sensory 12 miesięcy. Gwarancja traci ważność w wyniku dokonania samowolnych przeróbek lub obsługi niezgodnej z niniejszą instrukcją użytkowania.

### 15 Prawa autorskie

Prawa autorskie instrukcji użytkowania należą do AFRISO Sp. z o.o. Przedruk, tłumaczenie i powielanie, także częściowe jest bez pisemnej zgody zabronione. Zmiana szczegółów technicznych, zarówno pisemnych jak i w postaci obrazów jest prawnie zabroniona.

Zastrzegamy sobie prawo do wprowadzania zmian bez uprzedniej informacji.

## 16 Satysfakcja klienta

Dla AFRISO Sp. z o.o. zadowolenie klienta jest najważniejsze. W razie pytań, propozycji lub problemów z produktem, prosimy o kontakt: zok@afriso.pl, tel. 32 330 33 55.

| E             | EU-Konformität                     | serklärung Mess                                                                                                  |                                                                                                       |
|---------------|------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| E             | EC Declaration of Conform          | nity * Certificat de co                                                                                          | Messtechnologie<br>onformité CE * Dichlarazione di conformità CL                                      |
|               | Als H<br>We declare that our produ | lersteller erklären wir h<br>lot * Nous déclarons que                                                            | niermit, dass unser Produkt<br>e notre produit * Dichiariamo che nostro prodotto                      |
|               | MUL                                | TILYZE                                                                                                           | R STe / STx                                                                                           |
|               | mit den Vors                       | chriften folgender euro<br>conforms to * conform                                                                 | päischer Richtlinien übereinstimmt<br>ne avec * conforma a                                            |
| 2             | 014/30/EU<br>014/30/EU             | Elektromagnetische<br>EC directive electromag                                                                    | Verträglichkeit<br>gnetic compatibility                                                               |
|               |                                    | EN 301 489-1 V2.1.1,<br>EN 60950-1:2006 +A<br>EN 62479:2010<br>EN 61000-6-1<br>EN 61000-6-3:2007+,<br>EN 50270-1 | /EN 301 489-3 V2.1.0/ EN 301 489-17 V2.2.1<br>11:2009 +A12:2011 +A1:2010 +A2:2013<br>A1:2011 +AC:2012 |
| <b>2</b><br>2 | <b>014/53/EU</b><br>014/53/EU      | EN 300 328 V.2.2.0<br>EN 300 328 V.2.2.0                                                                         | Funkgeräte-Richtlinie (RED)<br>Radio Equipment Directive (RED)                                        |
| <b>2</b>      | <b>011/65/EU</b><br>011/65/EU      | Beschränkung der V<br>Restriction of the use of                                                                  | <b>/erwendung gefährlicher Stoffe (RoHS)</b><br>f certain hazardous substances (RoHS)                 |
| <b>2</b>      | <b>012/19/EU</b><br>012/19/EU      | Elektro- und Elektroni<br>Waste Electrical and Ele                                                               | k-Altgeräte (WEEE)<br>ectronic Equipment (WEEE)                                                       |
|               | managa dan 10.00.0040              |                                                                                                                  | 18-111                                                                                                |

SYSTRONIK Elektronik und Systemtechnik GmbH • Gewerbestraße 57 • D - 88636 IIImensee Tel. +49 (0) 7558 9206 - 0 • Fax +49 (0) 7558 9206 - 20 • E-Mail: info@systronik.de • Website: www.systronik.com

# 18 Opcja: "Pomiar emisji pyłu"

### <u>Uruchomienie programu "Pomiar emisji pyłu"</u> (kolor menu: zielony)

Po uruchomieniu programu "Pomiar pyłów" najpierw należy połączyć bezprzewodowo analizator z STM 225 (urządzenie do pomiaru pyłów). Pierwsze połączenie z dowolnym STM wymaga znalezienia urządzenia. Menu szukania uruchomi się po wybraniu opcji "Wybierz urządzenie":



Za pomocą opcji "Szukaj nowych" aktywowane zostaje wyszukiwanie i wszystkie wykryte urządzenia zostają wyświetlone. Należy wybrać STM 225, a połączone urządzenie zostanie automatycznie zapamiętane przez analizator spalin MULTILYZER STx. Połączony STM 225 będzie domyślnym urządzeniem dla następnych pomiarów. Za pomocą opcji "Połącz" nastąpi połączenia z STM 225 oraz automatycznie rozpocznie sie kalibracja na świeżym powietrzu.



Po kalibracji pojawi się menu wyboru paliwa. Po wyborze paliwa pojawi się ekran główny pomiaru pyłów, a w nim wyświetlana jest informacja o stanie STM 225 w kolorze niebieskim.



Należy ustawić odpowiednie parametry na STM 225. Jak tylko STM 225 będzie gotowy zostanie to wyświetlone na ekranie analizatora MULTILYZER STx. Pomiar może zostać rozpoczęty zarówno z poziomu analizatora, jak i z poziomu STM 225.



W czasie pomiaru spalin wyświetlany jest czas w minutach który już upłynął. Pomiar zatrzymuje się automatycznie po upłynięciu 15 minut. Wyświetlone zostają obliczone referencyjne wartości spalin (EBco i EBdst) z odpowiednią niepewnością pomiarową (Uco i Udst). Jest także wyświetlony wynik obliczonych referencyjnych wartości spalin minus niepewność pomiarowa (EBco-U i EBdst-U). Te wartości można wydrukować, zapisać lub przetransferować za pomocą kodu QR.



Emisje oblicza się z 15-minutowej wartości średniej w odniesieniu do 15-minutowej średniej wartości O2:

$$\mathsf{EB} = \mathsf{EM} * \frac{21 - O_{2B}}{21 - O_2}$$

EB = Emisja, odniesiona do wartości referencyjnej O2

EM = Emisja zmierzona

O<sub>2B</sub> = O2 referencyjne

O2 = Zmierzona wartość O2

| Symbol   | Opis                                                                                    | Jednostka |
|----------|-----------------------------------------------------------------------------------------|-----------|
| EBco     | Emisja tlenku węgla w odniesieniu do<br>wartości O2                                     | g/m³      |
| EBdst    | Emisja pyłów w odniesieniu do warto-<br>ści O2                                          | g/m³      |
| Uco      | Niepewność pomiarowa CO w odnie-<br>sieniu do wartości O2                               | g/m³      |
| Udst     | Niepewność pomiarowa pyłów w od-<br>niesieniu do wartości O2                            | g/m³      |
| EBc-U    | Emisja tlenku węgla w odniesieniu do<br>wartości O2 minus niepewność po-<br>miarowa Uco | g/m³      |
| Ebdst-U  | Emisja pyłów w odniesieniu do warto-<br>ści O2 minus niepewność pomiarowa<br>Udst       | g/m³      |
| Dust     | Aktualne stężenie pyłów                                                                 | g/m³      |
| Med Dst. | Średnie stężenie pyłów w ciągu 15<br>minut                                              | g/m³      |
| 02       | Aktualne stężenie tlenu                                                                 | Vol.%     |
| Med O2   | Średnie stężenie tlenu w ciągu 15<br>minut                                              | Vol.%     |

 $\triangle$